
www.manaraa.com

“Computer Science Majors’ Perception of the Overlapping Cognitive Structures between
Computer Programming and English Composition”

A Dissertation

Presented in Partial Fulfillment of Requirements for the Degree of Doctor of Philosophy
in the College of Arts and Sciences Georgia State University

2004

by

Ruth Ann Goldfine

Committee:

L. Pujiman, Chair _ * #

et, M en ^Lynee Lewis Gail

Dr. Mary E. Hocks, Member

July 19. 2004
Date

A
Dr. Matthew Roudane

Department Chair

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

UMI Number: 3169747

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

UMI
UMI Microform 3169747

Copyright 2005 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

11

Abstract

The purpose of this study was to determine (1) whether Computer Science (CS)

and Computer Science Information Systems (CSIS) majors recognize the overlapping

cognitive structures that exist in the areas o f computer programming and English

composition and (2) whether these students believe that the overlapping cognitive

structures assist them in mastering the writing skills and strategies presented in a

technical writing course. The 47 participants in this study were predominantly CS and

CSIS majors at a large suburban university; although the class was open to all students at

the university, very few participants were majoring in other disciplines.

Participants completed pre- and post-test self-evaluating questionnaires at the start

and the conclusion of the academic semester, respectively, in order for the researcher to

(1) identify their attitudes and perceptions regarding overlapping cognitive structures and

the potential impact of this overlap on writing ability, and (2) measure whether

participation in a writing course that did not explicitly draw attention to such cognitive

structures had any impact on students’ attitudes and perceptions regarding these

structures. A select subset of students also responded to follow-up questions and/or

participated in interviews.

The findings revealed that although instructors and researchers have identified

overlaps in the cognitive structures used in programming and writing, and they have

utilized these overlaps to teach English composition to CS/CSIS students, such overlaps

are not readily apparent to students without prompting. Yet, these CS/CSlS students,

when pressed, were able to identify some analogies between the programming and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Ill

writing processes, though they professed disbelief that any such relationship between the

two would be beneficial to them in a writing course. Consequently, in order for students

to benefit Irom the overlapping cognitive structures that exist between writing and

computer programming, instructors need to explicitly identify these structures to students

and to develop assignments and activities that demonstrate how these overlapping

cognitive structures lead to the transfer o f knowledge from one discipline to the other.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

IV

Acknowledgements

First and foremost, I would like to express my deepest appreciation to Dr. George

Pullman for his assistance, inspiration, and encouragement. Without his support, this

research project would never have been realized. I also extend my gratitude to Dr. Lynee

Gaillet and Dr. Mary Hocks, both of whom provided insightful suggestions and

comments that helped shape the direction of my research.

A tremendous debt of gratitude is owed my parents, Anthony and Patricia Kodak,

who have always supported my educational pursuits and are largely responsible for my

interest in academia. I am grateful, also, to my in-laws, the late Milton and Vivian “Jeep”

Goldfine, for their extraordinary generosity in subsidizing the greater part o f my graduate

school expenses.

Most of all, a special heartfelt thank you goes out to my dear husband, Bemie,

whose complete faith in me and assistance on the homefront gave me the confidence and

time I needed to pursue a Doctoral Degree. Finally, to my twin boys. Will and Jake, who

joined the family mid-way through my doctoral program: may my academic success be

the inspiration for yours.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table of Contents

Abstract .. ii

Acknowledgements .. iv

Introduction .. 1

Purpose of the Study ... 3

Research Questions................... 4

Definition of Terms and Acronyms... 4

Assumptions................. 6

Limitations.. 6

Researcher Biases.. 7

Importance of the Study.. 10

Organization of the Remaining Sections... 11

Review of the Literature ... 12

Theories of Learning and Composition Theory..................................... 13

Natural Language .. 21

Artificial Languages ... 25

Comparison of Natural Language and Artificial Languages 32

Computer Science (CS) and Computer Science Information Systems

(CSIS) Majors in the Writing Classroom 35

Methodology and Procedures .. 43

Setting .. 43

Participants ... 45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

VI

Instruments 49

Data Collection 50

Data Sources, Collection Strategies, and Triangulation 55

Data Analysis 57

Description and Discussion of the Data. 59

Likert Responses .. 59

Written Comments and Interview Responses 61

Findings and Key Recommendations............... 73

Findings...................................... 74

Key Recommendations...................... 78

Bibliography.. 85

Appendix A: Computer Science Undergraduate Major Degree Requirements............. 93

Appendix B: Computer Science Undergraduate Maj or S ample Program of Study...... 95

Appendix C: Computer Science Information Systems Undergraduate Major

Degree Requirements 96

Appendix D: Computer Science Information Systems Undergraduate Major

Sample Program of Study 98

Appendix E: Sample Syllabus of a Technical Writing Course at Kennesaw State

University... 99

Appendix F: Demographics Questionnaire......... 105

Appendix G; Pre-Test Self-Reporting Questionnaire 108

Appendix H: Post-Test Self-Reporting Questionnaire 110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

V ll

List of Figures

Figure I: Writing/Programming Analogies 37

Figure 2: Demographics Comparison........................... 48

Figure 3: Pre- and Post-Test Comparison of Quantitative Data 60

Figure 4; Student Responses to Statement 4 67

Figure 5: Students’ Comments in Support of Statement 7 Responses........................... 70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Introduction

The development of college students’ writing abilities, long the purview of

English Departments, has, over the past decade, become a prominent issue in Computer

Science departments at colleges and universities throughout the United States (Fell,

Proulx, and Casey, 1996; Kaczmarczyk, 2003; Kay, 1998; Taylor and Paine, 1993;

Walker, 1998). Although instructors in the discipline of computer studies have long

recognized that writing is a fundamental activity in software development because

programmers “must be willing to devote the necessary time and energy to refine written

documentation” (Bickerstaff and Kaufinan 44) and must be able to express their ideas

clearly, covering all contingencies, since a computer only does what it is programmed to

do (Fell, Proulx, and Casey 204), the recent emphasis on the writing capabilities of

Computer Science (CS) and Computer Science Information Systems (CSIS) students

covers a greater breadth of writing scenarios than simply programming and program

documentation.

Specifically, a recent survey of potential employers of graduating CS/CSIS

majors revealed that, in addition to technical expertise, these graduates are expected to

possess strong written and spoken English skills (Pfeiffer 69, Hartman 32).

Consequently, numerous Computer Science departments have focused on improving the

oral and written communication skills of their students - with the intent of developing

and applying these skills within the Computer Science program (Walker 24). This

interest in students’ writing capabilities has led to a profusion of presentations and

articles regarding strategies for composition and, most notably, garnered significant

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

attention at several recent Association for Computing Machinery (ACM) Special Interest

Group on Computer Science Education (SIGCSE) Technical Symposiums on Computer

Science.

Despite the ongoing conversation about the writing abilities of Computer Science

majors, some researchers, such as Lisa Kaczmarczyk (2003), contend that

currently there is little concrete evidence of progress towards increasing

[computer science] students’ writing ability, primarily because it has not

been widely studied. A few educators have proposed tools [and] provided

pedagogical tips or descriptions of classroom practice Some of this

work has emphasized student benefits, but the perspective has been

primarily Instructor-centered. This focus is problematic because

successful teaching strategies depend upon understanding student

perceptions. (341)

Kaczmarczyk’s argument points to a need for student-centered research to determine the

perceptions of CS/CSIS students and to parlay the findings of such studies into improved

approaches for teaching writing skills and techniques to these students. The following

study is an attempt to respond to the need Kaczmarczyk has identified by exploring the

perceptions of CS/CSIS students participating in a technical writing course. The

particular emphasis of the study is on whether these students identify any similarities

between writing and computing programming and, if so, whether the students perceive

these similarities to be of benefit to them in mastering the skills and techniques presented

in a writing course.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Purpose o f the Study

The purpose of this study was to determine (1) whether Computer Science (CS)

and Computer Science Information Systems (CSIS) majors recognize the overlapping

cognitive structures that exist in the areas of computer programming and English

composition and (2) whether these students believe that the overlapping cognitive

structures assist them in mastering the writing skills and strategies presented in a

technical writing course. It was anticipated that an understanding of student perceptions

regarding the influence of overlapping cognitive structures may inform composition

theory, particularly as applicable to the teaching of technical writing, and influence

instruction in the writing classroom.

Participants in this study were predominantly college juniors and seniors at a

sizeable university (enrollment: 18,000). Most were CS or CSIS majors; all were

enrolled in one of eight sections of an upper-level technical writing course taught by the

English Department during the Fall 2003 and Spring 2004 semesters. Identical pre- and

post-tests, which asked students to respond to statements using a Likert scale and

solicited written follow-up comments to those statements, were administered at the

beginning and end of the semester. The intent was to (1) determine students’ perceptions

toward the potential impact of their computing knowledge on their writing skills and (2)

determine whether students’ perceptions changed following their completion of the

course.^

' The course was taught in its traditional style; that is, no attempt was made to point out similarities
between natural and artificial languages, no analogies between programming and writing were discussed,
and no discussion of interdisciplinary transference of skills was introduced.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Research Questions

Specifically, this study addressed and was guided by the following research

questions:

Primary Questions

1. Do CS and CSIS students recognize the overlapping cognitive structures that

exist in computer programming and in writing?

2. Do CS and CSIS students believe their understanding of computer

programming assists them in mastering the writing skills and strategies

presented in a technical writing course?

Secondary Questions

3. Should CS/CSIS students’ perceptions of overlapping cognitive structures and

the potential effect of this overlap on their writing abilities influence the way

in which technical writing is taught to these students?

4. Do the results of the study have implications for the future of the technical

writing curriculum?

Definition of Terms and Acronvms

The following terms and acronyms are central to this study:

Artificial Languages: For the purpose of this study, the term artificial languages

designates the collection of computer programming languages employed to

allow people and computers to communicate. Each language possesses its

own vocabulary and syntax that is governed by a system of symbols and rules

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

in order to ensure accurate and efficient communication between the

programmer (human) and the computer (machine). Ambiguity is

impermissible and will result in failed communication (i.e., the program will

fail to run). Examples of these languages include Java, Visual Basic, and

C++.

Coding: the process of linking new information to something that is already

known

Cognitive Structures: interrelated or organized schemes (i.e., programs of action)

for interacting with one’s environment, developed through productive

attempts at “handling, dismantling, and generally transforming [one’s]

surroundings” (Phillips and Soltis 42-43); derived from Piaget’s studies o f the

cognitive development of children

Constructivism: a theory of learning which holds that knowledge is actively

constructed by students who build recursively on the knowledge (i.e., facts,

ideas, and beliefs) that they already possess

CS: Computer Science

CSIS: Computer Science Information Systems

Natural Language: For the purpose of this study, natural language, the naturally

occurring communication system that exists among human beings, is limited

to American English. Natural language includes an established vocabulary

and syntax that are governed by a system of symbols and rules (e.g.,

punctuation), which ensure accurate and efficient communication between

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

human beings. Ambiguity is ubiquitous but does not generally hamper

understanding.

Transfer/Transfer of Training: the acquisition, performance, or relearning of a

second habit because of, or as a result of the influence of, a previously

established habit

Assumptions

The following assumptions are implicit in this research study:

1. The study participants responded honestly.

2. The instruments used in this research to gather data were sufficiently reliable

and valid to allow accurate inferences with respect to the participants’

knowledge, attitudes, and perceptions.

3. The research design and data analysis procedures were appropriate relative to

the intent of this investigation.

Limitations

The limitations of this study are as follow:

1. Nearly all of the research participants were CS or CSIS majors in their junior

or senior years at the university. Consequently, they are likely not

representative of college students majoring in other disciplines, nor are they

necessarily representative of first-year and sophomore students.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2. The pre-test administered at the start of the semester may have signaled the

intent of the research to the participants, thereby causing them to alter their

responses on the post-test to reflect what they believed was the desired or

intended response.

Researcher Biases

The researcher was also the instructor who taught the sections of the technical

writing course in which the participants were enrolled. Consequently, the researcher

assumed dual roles, both as participant-observer and as teacher-researcher. In assuming

these dual roles, the researcher placed herself “daily in the research and work

environment. . . [affording herself] an insider, or emic, perspective on the research

process” (Baumann and Duffy-Hester 2). Some scholars have argued that ethical

concerns may arise when researchers take on dual roles (Dorsel, 1981; Hammack, 1997)

- such as the potential for intentional or unintentional coercion to enlist student/subject

participation and the possibility that the researcher might face a choice between either

meeting the needs of the students or satisfying the demands of the research. However,

Bissex and Bullock point out that “research methods are not neutral tools; they embody

assumptions about causation and control, about how knowledge is acquired, and about

the researcher’s relationship to what is being studied” (12); therefore, the challenge of

maintaining neutrality is not unique to the teacher-researcher but exists in some form in

most types of research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

In its traditional form, research is seen as the purview of the detached data-

gatherer churning out objective, factual data; however, “objectivity is not the sole route to

knowledge. There is knowledge of a different sort to be gained through empathy and

involvement, through sympathetic observation that seeks to understand the experience of

other persons rather than their behavior as objects” (Bissex and Bullock 12-13). Kelly

Chandler, in her article “Working in Her Own Context: A Case Study of One Teacher

Researcher,” notes that the relationship between a teacher and his or her students allows

for meaningful insights on very specific issues (30). In particular, she points to the

experiences of teacher-researcher Loma Tobin, who commented, “When 1 felt things

weren’t going the way 1 thought they should (whatever way that was), 1 went to the kids

for help in answering my questions” (27).

The teacher-researcher phenomenon is highly accepted in the area o f rhetoric and

composition research; in fact, researchers’ assumption of dual roles is not only a

respected - and perhaps expected - practice but can yield results and insights that would

be otherwise impossible. In particular, practitioners and proponents o f qualitative

research and naturalistic inquiry argue the value of relationships such as those that exist

between teacher and student, noting that such involvement allows the researcher to

empathize with the subjects to the degree that he or she is able to elicit personal stories or

in-depth descriptions (Rubin and Rubin 13). Lincoln and Guba devote an entire chapter

in Naturalistic Inquiry to establishing the trustworthiness of data derived from the type of

qualitative, naturalistic research inherent in a study in which a teacher uses his or her own

students as subjects (289-331). Furthermore, the teacher-researcher phenomenon can

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

eliminate (or at least ease) difficulties in gaining access to subjects, a concern discussed

by scholars such as Erlandson et al. (1993) and Stake (1995).

Additionally, as a participant-observer in this study, the researcher’s findings

were shaped by numerous factors that are uniquely her own:

• her role as both instructor and researcher at a university,

• her education and experiences in academia while pursuing undergraduate and

graduate degrees,

• her understanding of and abilities in the use of artificial languages gained

through research and coursework, and

• her comprehension of the writing process as acquired in her graduate studies

and her experience as an English instructor.

Given these factors, the researcher, particularly in interpreting the quantitative data and

making meaning out of the qualitative responses, imposed a reality distinctly her own.

Although it is arguably impossible for any researcher to identify all of her biases

at the outset of a study or to control the possibility of new ones emerging during the

course of a study (Lincoln and Guba 282), the researcher of this study acknowledges the

following biases:

• a belief in the social construction of knowledge, and

« a belief in constructivism - a theory of learning by which students are

believed to rely on their existing knowledge to make sense of new concepts.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

10

Tmnortance of the Study

The tremendous interest of Computer Science departments in the writing

capabilities of their majors over the past several years, which echoes - or perhaps results

from - the concerns and/or expectations of employers, gives testament to the desire of

educators in the field of computer studies to ensure their graduates are skilled in the art of

written communication. Despite this obvious desire to promote writing skills among CS

majors, Lisa Kaczmarczyk contends that there is inadequate evidence of progress in this

area because of limited research. In particular, Kaczmarczyk points to an absence of a

student-centered perspective - a significant omission that she believes has hindered the

development of successful teaching strategies (341). Conducting such student-centered

research may inform pedagogy and, in turn, result in improved writing among CS/CSIS

majors.

This study is, in essence, an attempt to fill the research gap noted by

Kaczmarczyk. The goal of this study was to take a first step toward investigating

CS/CSIS students’ perceptions of writing, particularly regarding these students’

recognition of the overlapping cognitive structures in programming and writing, and

regarding their attitudes toward the significance of these overlaps in helping them to

master writing skills and strategies. It was hoped that such research would provide

valuable information to assist in tailoring an approach to writing that meets the specific

needs and expectations of CS/CSIS majors by best utilizing their unique talents, skills,

and existing knowledge base. Although the findings of this study are specific to CS/CSIS

students participating in a technical writing course, it is hoped that they will have a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

11

broader applicability, perhaps serving as the blueprint to guide researchers in all

disciplines in identifying and capitalizing upon students’ perceptions and existing

knowledge by tailoring courses such that they promote student learning by building upon

the knowledge students already possess.

Organization of the Remaining Sections

The remainder of this document is divided into the following four sections;

• Review of the Literature: a discussion of the available literature relevant

to this study.

• Methodology and Procedures: a description of the setting, participants,

instruments, and data gathering procedures.

• Description and Discussion of the Data: a presentation and explanation of

the data gathered during this study.

• Findings and Key Recommendations: an interpretation of the data,

emphasizing conclusions and recommendations for future research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1 2

Review of the Literature

The following review of literature resulted from an extensive search of numerous

interdisciplinary online databases (such as Access Science (McGraw-Hill), Research

Library from ProQuest, Academic Search Premier at EBSCOHost, and ISI Current

Contents) and a wide variety of professional journals (for example, AI Magazine, Annual

Review o f Psychology, College Composition and Communication, College English,

International Review of Applied Linguistics in Language Teaching, Journal of Advanced

Composition, Linguistics and Philosophy, Modern Language Journal, Technical

Communication Quarterly, Research in the Teaching of English, Teaching English in the

Two-Year College, and Technical Communications). A search of these databases and

journals produced no previous studies that addressed the specific topic of this

investigation. Therefore, five key areas deemed to be instrumental in achieving the goals

of this study were researched to provide the foundation for accurately interpreting and

understanding the data gathered:

• theories of learning and composition theory^

• natural language

• artificial languages

• comparison of natural language and artificial languages

• CS/CSIS majors in the writing classroom

 ̂Though these are technically two separate topics, a combined discussion of the two was deemed the most
efficient and appropriate way to accommodate their closely intertwined ideas and concepts.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

13

Theories o f Learning and Composition Theory

Although this study focuses narrowly on computer programming and writing, in a

broader sense, it deals with theories of learning. A current and - arguably — dominant

theory of learning is constructivism, which claims that knowledge is actively constructed

by students who build recursively on the knowledge (i.e., facts, ideas, and beliefs) that

they already possess. That is, the constructivist theory of knowledge “recognizes that it is

the learner who constructs knowledge, not the teacher who imparts it” (Biggs 2). Two

tenets of constructivism are (1) a teacher catmot ignore a student’s existing knowledge

but rather must question the student in order to understand what models the student

possesses and only then attempt to guide the student on the correct theory and (2) sensory

data combines with existing knowledge to create new cognitive structures, which are in

turn the basis for further construction (Ben-Ari 257-258).

Constructivism echoes the concepts put forth by earlier researchers (e.g., Biggs

and Moore, 1993, who build on the work of Piaget; Collins and Quillian, 1990; Donnelly

1994; and Phillips and Soltis, 1985, who draw on the research of Bruner) who studied

cognition, learning, and memory. These researchers argue that not only does most

learning proceed by “building new structures on the basis of preexisting structures, not by

forming arbitrary new associations” but also that “how fully a person understands a

sentence - or any experience he has - depends on how much stored information he

relates to it” (Collins and Quillian 119). Similarly, research in the area of linguistics

determined that “when we approach any text, our expectations, prior knowledge, and

individual experience all affect our ability to process that text” (Donnelly 30). For

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

14

example, Biggs and Moore describe the use of coding, the process of linking new

information to something that is already known, as a means of remembering new

information. In their example, an individual was asked to remember a series of numbers

by linking it to an already known series of numbers, such as a telephone number, street

address, or Social Security number:

Coding takes place on the basis of previous knowledge. But how can we

code a new experience when nothing quite like it has occurred previously?

It all depends on how much the new experience has in common with

earlier ones. If there is a very great deal in common, we might code the

new experience as “Uh-huh. Thingamajig again” Or we might note

some differences and, in trying to make sense out of them, recombine our

past experience in new ways, as when trying to work out the meaning of a

new word from its context. That recombination is called recoding. (215-

216)

Biggs and Moore further theorize that each new experience is matched to what is

already known and that four basic “matching” possibilities exist, each with different and

important cognitive and motivational consequences: (1) no mismatch: the match is exact

(or near enough); recognition and coding occur, but no rethinking or recoding; (2) some

mismatch: enough to challenge but not overwhelm, recoding is necessary but easily

achieved; (3) much more mismatch: cannot be handled, desperate recoding, panic; (4) all

mismatch; no comprehension, tune out, rely on non-verbal ways to reach goal (216).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

15

Biggs and Moore’s theories derive from the work of Piaget. Piaget argued that

learners interact with their environment, drawing upon the cognitive structures they

already possess to make sense of the current experience. If the experience is one that has

been engaged in many times before, the learner will be able to deal with it satisfactorily.

It is this argument, in part, that suggests to some researchers, such as Jerome Bruner, that

prior experience plays a significant role in education (Phillips and Soltis 45-49). In 1959,

Bruner, then a psychologist at Harvard, issued a report in which he discussed how

students could be prepared by their learning now to tackle problems in the future. He

argued that students must grasp the structure o f the discipline if they are to accomplish

this feat:

Grasping the structure of a subject is understanding it in a way that

permits many other things to be related to it meaningfully. To leam

structure, in short, is to leam how things are related.. . . in order for a

person to be able to recognize the applicability or inapplicability of an idea

to a new situation and to broaden teaming thereby, he must have clearly in

mind the general nature of the phenomenon with which he is dealing.

(Phillips and Soltis 56)

At the heart of the theories espoused by Biggs and Moore, Piaget, and Bmner is

the notion that learners, indeed all humans, will face new, unknown experiences and

challenges throughout their lives. Some of these challenges may include familiar

elements; others may be totally dissimilar to any of the cognitive structures the learners

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

16

possess. Yet, the majority of people successfully negotiate such challenges by relying on

the cognitive structures that they have. How? Through a phenomenon known as transfer.

Robert Travers, in Essentials of Learning (1967), asserts that

all teaching is based on the assumption that the immediate skills,

imderstandings, attitudes, appreciations, and other learned functions

influence behavior in a diversity of subsequent situations. Skill in the

writing of English is not taught so that the pupil may write better themes

in school, but so that he will be able to prepare all kinds of effective

written communications in his daily life. It is assumed that there will be

transfer o f training^ from whatever is learned in the field of writing in

school to whatever has to be written in outside situations. (234)

It would seem, then, that at its very core, education promotes, whether implicitly or

explicitly, not only discipline-specific knowledge, skills, and capabilities but also the

capacity to recognize situations that are similar to previous ones and the ability to draw

upon and apply the necessary (i.e., relevant) cognitive structures. In fact, Travers asserts

that “all learning takes place within the context of previous learning and hence involves

transfer” (235). He further claims that students must leam to code whatever it is they

have learned as belonging to a class. It is learning to code situations as presenting or not

presenting the essential features of an existing cognitive stracture that enables transfer;

the application of a principle (i.e., cognitive structure) to different situations “demands

“Transfer of training, broadly defined, occurs whenever the existence of a previously established habit has
an influence upon the acquisition, performance, or relearning of a second habit” (McGeogh and Irion, qtd.
in Travers 235).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

17

that the situations have some similarity, but the similarity may be at an abstract level”

(253).

In the 1970s, researchers such as M. C. Wittrock developed a generative

hypothesis that interpreted learning primarily as “the construction of concrete, specific

verbal and imaginal associations, using one’s prior experience as part of the context for

the construction. It is a model of learning as the transfer of previous learning” (173).

That is, when learners relate new information to their experience and are required to

construct associations or meaning involving the new information, their learning and recall

is facilitated (173). Likewise, other researchers (e.g., Gagne 1962; Bell-Gredler, 1986;

Gagne and Perkins-Driscoll 1988) believe that productive learning is

a matter of transfer of learning from component learning sets to a new

activity that [includes or incorporates] previously acquired capabilities.

The implications [are] that learning is cumulative and intellectual

development may be conceived as the building of increasingly complex

and interesting structures of learned capabilities. (McClendon 32)

Students’ use of cognitive structures and the phenomenon of transfer of training,

key in the constructivist theory of learning, are also significant in composition theory,

particularly in Flower and Hayes’ cognitive theory of composition (1981, 1988). Flower

and Hayes believe that a writer in the act of writing is “hard at work searching memory,

forming concepts, and forging a new structure of ideas, while at the same time trying to

juggle all the constraints imposed by his or her purpose, audience, and language itself’

(“Cognition” 92), and they contend that the writer has, in his or her long-term memory.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1 8

stored knowledge “not only of the topic, but of the audience and of various writing plans”

(“Cognitive” 369). Reading and writing theorist Sally Barr Reagan echoes this emphasis

on stored knowledge, claiming that “the greater the variety of texts readers encounter, the

wider their knowledge, which carries over and is applied when they begin to write” (179).

Flower and Hayes, as well as Reagan, have successfully extended the constructivist

theory of learning to the specific discipline of composition studies, and they have done so

by referencing stored memories in broad terms. Therefore, it seems possible that the

concepts of constructivism could be applied successfully to an investigation of the impact

of interdisciplinary stored knowledge - that is, cognitive structures - on the ability of

students (i.e., specifically, CS/CSIS students for the purpose of this study) to master

writing skills and strategies.

Flower and Hayes also contend that writers attempt to build a coherent network of

ideas (i.e., to create meaning)', as evidence of this, they cite writers’ attempts to “test or

evaluate what they’ve just said to see if it is related to or consistent with other ideas”

(“Cognition” 98). This notion is further supported by Frank Smith, who in his book

Understanding Reading: A Psycholinguistic Analysis of Reading and Learning to Read

claims that humans can only make sense of the world in terms of what they already know

(8). The implication of his claim, as regards this study, is that perhaps CS/CSIS students,

in referring to their stored knowledge of programming, make connections or “make

sense” of composition by relying on the interdisciplinary knowledge they already

possess, specifically, their knowledge of how to “write” (i.e., program) using artificial

languages.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

19

Furthermore, Smith states that our memories (i.e., our accumulated knowledge)

are not merely a collection of assorted snapshots, videos, and tape recordings of bits of

our past. Rather all our memories have meaning in that they are related to everything

else we know, more like a summary of our past experience. Specifically, he states; “I do

not want to remember that on 16 July I sat on a chair, and that on 17 July I sat on a chair,

and on 18 July I sat on a chair. I want to remember that chairs are for sitting on, a

summary of my experience” (Smith 8). His conclusion suggests that humans have the

capacity to make associations that allow for the extension of skills and knowledge

beyond the specific situation during which and for which they were initially acquired.

Perhaps, then, writers draw on skills and knowledge obtained outside the writing

classroom to aid them in understanding and mastering the writing process. For example,

a college student who writes home telling his parents about the time he spent studying in

the library Saturday afternoon but chooses not to tell them about the party he went to

Saturday night clearly understands the importance of audience in determining what to

write. Similarly, anyone who has built a model, followed a recipe, or programmed a

VCR can appreciate the need for logic and structure to ensure clarity. However, whether

writers tap into the knowledge and skills acquired outside the writing classroom to assist

them in their composition tasks may not be readily apparent if these writers have attained

a relatively high degree of competency in writing. Flower and Hayes anticipate that as

writers become more experienced, many of the basic goals associated with writing (e.g.,

starting with an introduction) become automated to the point that these objectives are not

even consciously considered by the writers (“Cognitive” 381). Consequently, well-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

20

learned skills from other disciplines that are applied to the act of composing may flow so

naturally for some writers that they are not even aware that they are applying the

knowledge they have gained from an “outside” source.

Flower and Hayes also acknowledge that extensive reading affects a person’s

ability to write. Specifically, a well-read person is more likely to be a good writer than a

person who is not well-read, simply because the former has a much “larger and richer set

of images” of what a text can look like (“Cognition” 99). This finding is further

supported by the reading and writing approach to composition. Reading and writing

theorists such as Bimbaum (1986), Reagan (1986), Stemglass (1983, 1986), and Tierney

(1986) demonstrate that the skills of reading and writing both employ similar cognitive

processes and rely upon a common text knowledge; therefore, experienced readers are

usually proficient writers, while inexperienced readers are almost always basic writers

(177). These findings support the constructivist theory of knowledge transfer from

existing cognitive structures to the mastery of a new challenge or skill.

While the implication seems to be that transference may occur equally and

without bias from any discipline or experience to any other discipline or experience, of

particular interest in this study is the transfer of knowledge from the cognitive structures

acquired in the discipline of Computer Science - particularly in the area of computer

programming - to the study of English composition. The processes the disciplines use to

create their end-products are strikingly similar; each includes audience analysis (i.e., end-

user/reader), design (i.e., pseudo-coding/outlining), review (i.e., user testing/peer review),

and chunking (i.e., subroutines/paragraphs and subsections), to name a few.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2 1

Additionally, at the most basic level, computer programming and composition are

incredibly similar; both require that developers (i.e., programmers and writers) use a

formal language - whether artificial or natural - that includes a specific vocabulary,

syntax, and punctuation to develop an end-product (i.e., computer program or written

document) that meets the audience’s (i.e., user’s or reader’s) needs. Given the

similarities between programming and writing, upper-level CS/CSIS majors may in fact

possess a wellspring of valuable cognitive structures, developed through their training in

computer programming, that overlap those structures invoked in English composition.

Specifically, since both programming and writing require that students “write” using a

formal language, an exploration of both natural and artificial languages was deemed

essential to this study in order to better understand potential overlaps in the cognitive

structures of the two disciplines.

Natural Language

“Natural language” refers to the naturally occurring communication system that

exists among human beings. Specifically,

when you speak English - or any other language - you are using a system

of sounds that have developed and evolved over a long period of time.

The language you learned growing up is called a natural language. In

other words, it is not an artificial language or one made up by humans for

computers, machines, or some special purpose. Natural human languages

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

22

are very technical and governed by rules . . . [but] are sensitive to people

and the communities they live in. (Ellis 1)

More simply stated, natural language is “a system of symbols and rules that enable us to

communicate,” where words, either written or spoken, are symbols and the rules specify

bow those words are ordered to form sentences (Harley 2). Additionally, all languages

have vocabulary and syntax that, when combined with the practical rules o f language use,

constitute a grammar - that is, everything that is known about the workings of a language

(Ellis 14).

Early myths regarding language, including the “Genesis” story in the Bible,

simply stated that language existed and a god gave it to man. Plato, on the other hand,

although he accepted the facts of language as given, questioned how language came

about and wondered about the principle that guided the creation of the first words.

Plato’s approach, radical for its time, paved the way for future language exploration,

resulting in the modem view that language is the result of a natural evolutionary process

and the natural influences that affect the development of humans (Ellis 3-4).

Borrowing from Harvey Daniel’s (1983) book Famous Last Words: The

American Language Crisis Reconsidered, Donald Ellis asserts that numerous claims

about natural language are accepted by all language theorists (13). Of particular

relevance to this study are the following three claims:

• Language is rule governed. To learn a language, one must leam a vast

system of rules. These rules, which govern sounds, words, the

arrangement of words, and the social aspects of speaking, are largely

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

23

subconscious and can be applied without being understood. The rules are

arbitrary; words can change meanings, and rules of sentence structure are

different in different languages (13).

• All languages have sounds, vocabulary, and syntax. Sounds are the

inventory of human noises that become meaningful; these are then

organized into vocabulary, which represents ideas, things, and actions in

the world. Syntax is the organization of words (i.e., the vocabulary) into

sentences to represent relations among ideas. These three components,

combined with the practical rules of language use, constitute a grammar

(14).

• Writing is derived from speech. Writing, a derivative form of speaking, is

based on a set of visual conventions (i.e., the alphabet) that represent the

sounds of speech and is subject to many rules and variations. The

development of writing, beginning about 5,000 years ago, “was the first

baby step on the journey to computers, databases, and massive information

dissemination” (16).

Mastery of the grammar of natural language perhaps gains significance when the

written word, as opposed to the spoken word, is being used to communicate. In order to

ensure accurate and efficient communication, both writer and reader must be

knowledgeable of the writing system for their language. That is, they must know

the regularities of the written language, the forms of written symbols, the

way they are sequenced on the page, the system of punctuation marks and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

24

other typographical conventions, the systems of spelling in sound-based

written languages, a set of individual idiosyncratic word forms, and much

else beside. (Cook 1-2)

Although natural language is governed by specific rules, sufficient flexibility

exists within those rules to allow for ambiguity. For example, all languages adhere to

syntactical rules of one sort or another, but the rigidity of these rules is greater in some

languages. In the English language, syntax is especially important because meaning is

determined by word order. In the sentence “The ftiend of the mother and the father will

arrive soon,” it is possible to attach two different meanings to the sentence. One person -

the friend of the mother and father - may be arriving soon, or two people - the friend of

the mother and also the friend of the father - may be arriving soon. Such ambiguity is

called stmctural ambiguity because it arises from the fact that there is more than one way

for the word elements to combine into meaning (Ellis 29-31; Harley 308).

Similarly, punctuation plays a significant role in ensuring the comprehension of

written language. Punctuation divides information into meaningful chunks and, in effect,

serves as guideposts to the reader. Punctuation has always been inherently systematic.

Although centuries ago each scribe may have used a different system, the punctuation

system underwent major developments at periods (roughly, the fourth and seventeenth-

eighteenth centuries) when literacy was expanding across class boundaries and writers

could no longer assume as much common mental ground with readers as they had

previously taken for granted (Mann 362-363).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

25

In the teaching of punctuation, Nancy Mann advocates drawing upon analogies

with other disciplines. For example, she claims that the easiest of the nonessential

markers to teach is the colon because instructors can capitalize on students’ familiarity

with the equals sign by using math symbols to represent sentences. Thus, the common

error of placing a colon between the verb and a list of objects (as in We demand: A, B,

and C) is like an equation with no term on the left-hand side, while placing a colon

between the verb and a list of complements {My reasons are: 1, 2, and 3) is like using

two equals signs in a row (384).

Syntax and punctuation are essential because natural language is not a formal

system (or logistic system) in which a sign (i.e., symbol/word) has only one meaning.

Every element of language - from phonemes (invariants o f the sounds of speech), to

morphemes, to words, to sentences, to text segments - can have multiple meanings; this

is simply the way the human mind works. On the contrary, artificial languages (i.e.,

computer programming languages) are able to operate only within a system in which

each sign has a single meaning (Kreymer 2). Despite this significant difference, natural

and artificial languages actually have quite a bit in common.

Artificial Languages

The term “artificial languages,” for the purpose of this paper, designates the

collection of computer programming languages employed to allow people and machines

(specifically, computers) to communicate. Computer programming languages, then, can

be defined as “the different notations used to communicate algorithms to a computer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2 6

[where] an algorithm is the set of instructions and the order in which they have to be

performed” (“Programming” 1). Notably, computers can only understand instructions

presented in machine language, a sequence of binary numbers (zeroes and ones) where

each number may indicate the operator (i.e., instruction to be executed) or the operands

(i.e., the pieces of data) on which the instruction is performed. Programming in machine

language is cumbersome and tedious; however, the earliest programmers had no other

options.

In the 1940s, programmers of the first computers had no choice but to write

instructions in sequences of binary digits (i.e., machine language) that the computer could

understand and execute. Instructions were written in an eight-digit format

WWXYYYYY, “where WW stands for an arithmetic operation, X signifies a register

(called an operand register for performing arithmetic calculations) to contain one

argument for an operation, and YYYYY signifies the memory location” (“Programming”

1). Understandably, programming in this manner proved difficult and resulted in

numerous errors.

To facilitate programming and alleviate errors, assembly language was developed

to replace machine language. In assembly language, all locations were provided easy-to-

remember names and machine instructions were given symbolic names. A relatively

simple program (i.e., an assembler) converted this symbolic notation into an equivalent

machine language program. Though assembly language was an improvement over

machine language, programs were still very hard to write and mistakes were common

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

27

because programmers were forced to think in terms of the computer’s architecture rather

than in the domain of the problem being solved.

In the late 1950s, the first higher-level programming languages were patterned

after mathematical notation. These languages were based on the concept that to compute

|A + B - C| and store the result in a memory location called D, all programmers had to do

was write D = |A + B --C| and let a computer program, the compiler, convert that equation

into the sequences of numbers that the computer could execute. FORTRAN (an acronym

for Formula Translation), developed by IBM under the leadership of John Backus in

1957, was the first major language in this period. FORTRAN statements were patterned

after mathematical notation; therefore, the above example would be written as D = abs (A

+ B - C) where abs represented a function that computed the absolute value of its

argument. The basic program unit is the subroutine or function. Each subroutine is a self-

contained unit that computes some value. Notably, FORTRAN became the model for

most current languages, including BASIC, C, C++, and Java (“Programming” 4-5).

Initially, there was resistance to higher-level languages (called higher-level

because they were deemed more complex or “higher” than the assembly languages of that

day). Computers were extremely expensive, and early compilers often generated

inefficient sequences o f instructions in compiling a program. Furthermore, although

programmers made mistakes in assembly code, it was still deemed less expensive and

more efficient to correct those errors than to run ineffective programs on these expensive

machines. However, higher-level languages are viewed quite differently in the 2C*

Century. Computers have become significantly less expensive and substantially faster;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2 8

moreover, compiler technology has advanced to the point that compiled programs often

run as fast or faster than handwritten assembly code. Among these higher-level

languages, several have made lasting contributions to artificial language design:

FORTRAN, LISP, ALGOL, COBOL, C, C++, and Java. Moreover, almost all modem

concepts o f computer programming languages first appeared in the four important

languages developed from 1957 through 1962: FORTRAN, ALGOL-60, COBOL, and

LISP (“Programming” 5).

Around the time FORTRAN was being designed, John McCarthy at the

Massachusetts Institute of Technology was investigating software for problem solving.

McCarthy developed LISP (for LISt Processing), an applicative programming language

that is the basis for almost all artificial intelligence and expert system developments since

then (“Programming” 5-6). In I960, an intemational committee led by Peter Naur and

John Backus, developed ALGOL-60' ̂by extending the ideas present in FORTRAN. A

notation called BNF (Backus-Naur Form), a grammatical form called a context-free

grammar, defined the language; this grammar, coupled with advances in compiler

technology, allowed efficient compilers to be developed almost automatically.

Additionally, ALGOL-60 further developed the concept of the subroutine (called a

procedure in ALGOL-60) to permit the easy communication of data from the calling

procedure to the called procedure (“Programming” 5).

ALGOL-60 is an acronym for ALGOrithmic Language, 1960.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

29

Also in 1960, the U.S. Defense Department, under the leadership of Grace

Hopper, organized the development of COBOL .̂ COBOL introduced the concept of

record to provide access to data for business applications. During the 1970s, Niklaus

Wirth further refined this concept with the type declaration and the record type in the

Pascal programming language. Also during the early 1970s, AT&T Bell Laboratories

developed C, a higher-level computer language with a structure like FORTRAN. A C

program consists of several procedures, each composed of several statements, including

the IF, WHILE, and FOR statements. However, a primary focus of C was to include

operations that allow the programmer access to the underlying hardware of the computer.

Therefore, C includes a large number of operators to manipulate machine language data

in the computer and a strong dependence on reference variables so that C programs are

able to manipulate the addressing hardware o f the machine (“Programming” 5, 24).

Following C was C-++, developed in the early 1980s as an extension to C by

Bjame Stroustrup at AT&T Bell Labs. The idea was to extend C with Smalltalk-like

classes. Each C++ class would include a record declaration as well as a set of associated

functions. In addition, an inheritance mechanism similar to Smalltalk was included in

order to provide for a class hierarchy for any program (“Programming” 24).

By the early 1990s, the World Wide Web was becoming a significant force in the

computing community, and web browsers were becoming ubiquitous. For security

reasons, browsers were designed such that they could not affect the disk storage of the

machines they were running on. All computations performed by a web page were carried

' Common Business Oriented Language

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

30

out on the web server accessed by web address (i.e., its Uniform Resource Locator, or

URL) in order to prevent web pages from installing viruses on user machines or

inadvertently (or intentionally) destroying the disk storage of the user. Consequently, all

information bad to be transferred from the user to the web server.

During this period, James Gosling at Sun Microsystems led the development of a

product called Oak - which evolved into Java in 1995 - that could execute on the user’s

machine. Instead of transferring all of the user’s data to the server machine, the server

would transfer the application program to the user. In order to make this transfer

efficient, the transferred program had to be both small and capable of running on every

browser on every computer connected to the Internet. Sun decided to transfer a version

of the source program (the byte code) rather than the usually longer machine language

program. A program built into the browser executed the byte code as if it were a machine

language program for that particular machine. Such a program is typically called an

interpreter.

The constraint on this byte code was that it could not affect the disk storage of the

user’s machine. Initially, C++ was the programming language of choice due to its class

hierarchy and efficient execution model. However, the pointer references and binary

operations on machine addresses in its underlying C base language made it impossible to

assure adherence to the web security model. Consequently, C++ was dropped as the base

language and was replaced by Java, which bears a strong similarity to C++ without many

of the problems of C++ (“Programming” 25).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

31

Keywords (sometimes called reserved words) are the built-in vocabulary of Java.

Often these keywords express a command or an operation for the computer to perform.

In order for a program to function properly, each keyword must be used correctly and in

the appropriate place. In addition to keywords, the Java language includes identifiers to

allow programmers to name the Java classes, fields, and methods they create (Gilbert 29).

Very specific, yet simple, rules exist for creating Java identifiers:

• An identifier must begin with an upper- or lowercase letter. While it is

permissible to begin with an underscore (_) or a dollar sign ($), this is

considered bad form by human readers.

• The digits (0-9) can be used as part of the identifiers, although they carmot

be used to begin one.

• Identifiers are not restricted in length, but those longer than 20 characters

quickly become tedious to type.

• The case of the letters used in identifiers is significant to Java;

programmers must take care to use lowercase and uppercase characters

accurately. (Gilbert 29)

Delimiters serve as the punctuation marks of the Java language. Like the

commas, periods, and brackets in natural written language, delimiters group things,

making clear where one ends and another begins. When a computer compiles a program

written in Java, it first scans the source code looking for delimiters, then uses these

delimiters to discover the structure of the program. A mistyped delimiter will thoroughly

confuse the compiler, preventing the program from compiling and/or running.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

32

Consequently, it is crucial that delimiters are typed correctly (Gilbert 29-30). The

following characters are delimiters in the Java language: braces ({}), parentheses (()),

semicolons (;), single quotation marks (‘), double quotation marks (“), and colons (:).

Although each computer programming language will have its own specific rules

that govern its use, some general guidelines for program development have evolved:

• Do not allow large programs to become monolithic; instead divide them

into relatively independent, easy-to-understand pieces, known as the code

subroutine, procedure, ox function (Gilbert 19).

• Develop pseudo code to outline the essentials of a computer program

using English statements and programming language-like key words and

structures (“Computer” 1).

• Indent to show the structural relationship among the statements and to

enhance the readability of the program (“Computer” 2).

In many instances, these guidelines are quite similar to those invoked in the use of natural

language.

Comparison of Natural Language and Artificial Languages

The preceding brief history of computer programming languages demonstrates

that these artificial languages are becoming increasingly similar to natural language.

Specifically, a comparison of natural language and Java reveals many parallels between

the two, including: (1) dedicated vocabulary, (2) importance of word order/placement,

(3) grammatical rules that ensure accurate communication between author (i.e..

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

33

programmer/writer) and audience (i.e., computer/reader), (4) chunking (i.e.,

subroutines/paragraphs), and (5) structure (as identified by delimiters and punctuation

marks). In addition to these concrete elements shared by natural and artificial languages,

theoretical similarities have been identified by researchers such as Mann (2003), Bresko

(1991), and Corbin, Moell, and Boyd (2002).

Nancy Mann, drawing on the work of Randolph Quirk and Geoffrey Nunberg,

states that punctuation rules derive from the “intrinsically public nature of writing in

which the originator of the message is not usually present to clear up any difficulty in

interpretation . . . [and] such difficulties are inevitable because . . . a writer can’t control

or even predict the circumstances of message reception” (363). Punctuation, then, is a

“norm system” for ‘‘remote-controlling reader interpretation”; as such it must be highly

conventionalized to ensure clear comprehension by all readers. Although punctuation

symmetries are not perfect, they are valuable, providing the necessary function of

information management - specifically, telling readers how to interpret relationships

between and within propositions. Mann further contends that

the analogy with computerized information processing isn’t merely

decorative; we have, after all, created computers in our own image.

Punctuation decision rules rely on binary contrasts, a familiar cognitive

mechanism, and they repeatedly apply a single criterion (fixed vs. unfixed

location) to different kinds of entities (single words vs. whole statements),

another familiar mechanism. They respect what appears to be a biological

processing limitation of the human brain, the well-known fact that we can

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

34

apprehend simultaneously, in parallel, only an average of seven items.. . .

Like communication software, punctuation seems to work by signaling in

advance the mental posture that the receiving party needs to assume in

order to process upcoming information. Finally, like most computers, the

punctuation system abhors ambiguity. (Mann 363-364)

Likewise, Laura Bresko notes similarities between computer programming and

technical writing:

Many similarities exist between computer programming and technical

writing. For example, in the composition process for both programs and

documents, programmers and technical writers gather all available,

pertinent materials and begin writing in a logical order according to the

rules of the language they are using. The difference is in the language and

the audience. Programmers write programming code for the computer to

interpret and writers write words and sentences for their readers to

interpret. (218)

Michelle Corbin, Pat Moell, and Mike Boyd, commenting on Bresko’s analogy, observe

that her comparison “could be extended to assert that technical editing - and content

editing in particular - provides the same quality assurance processes for technical

information that software testing does for programming code” (287).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

35

Computer Science (CS) and Computer Science Information Systems (CSIS) Majors in

the Writing Classroom

The significant similarities between writing and programming as well as those

between natural and artificial languages have been capitalized upon by numerous

instractors (e.g., Hyler 1985; Pesante 1991; Levine, Pesante, and Dunkle 1991; Taylor

and Paine 1993; and Kay 1998) who have introduced successful, productive initiatives in

their classrooms to link computer programming and writing. In 1985, Linda Hyler, while

teaching at a junior high school, married programming and writing by engaging her

students in an innovative project that had them transfer a creative writing story activity to

the computer using BASIC. Consequently, writing occurred at two levels; the creative

writing of the story and the technical writing of the program (2). While such early

attempts to introduce the computer to the English writing classroom obviously required

tremendous ingenuity, less than 20 years later, computers have become a fixture in many

- if not most - writing classrooms. In contrast to Hyler and her ilk, educators in the 2L*

Century face the inverse challenge: bringing writing into the Computer Science

classroom.

Educators such as Harriet Taylor and Katherine Paine have met this challenge

head-on with their inventive approach to teaching composition skills to CS/CSIS students

in the technical writing classroom. Their approach includes relating the skills of

technical writing to the skills students have already developed in their computer science

courses; specifically, Taylor and Paine liken the writing process to that of software

development (277). Students participating in Taylor’s and Paine’s technical writing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

36

classes are assigned a term paper in the area of programming languages with explicit

specifications to research professional journals, develop formal proposals describing their

research, develop outlines, and write papers using the main division of the outline as the

relevant subdivisions of the papers. One of the significant outcomes of this assignment

was that students became aware of the parallels between writing projects and software

development projects (275).

Similarly, Linda Pesante, based on her belief that students can use their

knowledge of software development to enhance their understanding of the writing

process, invokes the power of analogy in her writing classroom. Specifically, she has

found it effective to “draw parallels between the development of a software system and

that of a document,” and she cites examples of software engineering students talking

about “engineering their papers” and attempting to “get it right during the design phase”

(206). To overcome student resistance to writing, Pesante points out how some of their

basic engineering skills (e.g., analytic and organizational skills) can help them understand

the writing process (207).

Another writing instructor, David Kay, reiterates the value of using analogies to

teach technical writing skills to CS majors. Kay’s institution (UC Irvine) requires all

students to take one upper-level course that concentrates on writing. One such course,

offered by the UC Irvine Computer Science Department, focuses on communications

issues relevant to computer scientists and computer professionals. To make writing more

relevant to the CS students in this course, instructors take advantage of analogies between

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

37

writing and software development in order to motivate CS students to pay more careful

attention to their writing (117).

Levine, Pesante, and Dunkle also report the benefits of using analogies in the

classroom. Specifically, they noticed a significant difference in their students’ attitudes

toward reviews of their writing after drawing analogies between producing a draft and

producing a prototype (119-120). From their experiences working with CS students,

these instmctors have concluded that leaming by analogy provides students with a

“powerful mechanism for applying the skills they already have as computer scientists and

software engineers” (117). The following table (Figure 1) presents many o f the analogies

noted and/or invoked by educators in teaching writing to CS/CSIS majors.

Figure 1: Writing/Programming Analogies

Writing process Software development *
Linear model of writing process Waterfall phase modef
Development of a document Development of a software system*
Planning/Prewriting Engineering®
Outlining/drafting Design phase*®; writing pseudo code**
Generating text Writing code*^
Grammar and syntax to facility audience
understanding

Grammar and syntax to facility computer’s
comprehension'*

Audience analysis User analysis*'*
Reuse Rapid prototyping**’*®'*̂
Chunking Subroutines**

* Taylor and Paine 277; Levine, Pesante, and Dunkle 117
’ Levine, Pesante, and Dunkle 117
* Pesante 206
® Pesante 206

Pesante 206
** Student comments

Pesante 207
Kay 119
Pesante 207
Pesante 207
Levine, Pesante, and Dunkle 119-120
Scacchi 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

38

The ability of instmctors to utilize analogies between writing and computer

programming to teach composition skills to Computer Science majors demonstrates that

useful and meaningful similarities exist between computer programming and writing.

Some of these similarities are listed below.

• Logic and Organization: Both programming and writing involve a logical,

carefully organized exposition of complex ideas. Consequently, CS/CSIS

students, with an understanding of the top-down design and stepwise

refinement of software, should be easily able to approach prose the same way

(Kay 119). Furthermore, their basic software engineering skills, such as their

analytic and organizational skills, will help them as writers (Pesante 207).

• Grammar: Both writers and programmers must follow a set of language mles

(Kay 119).

• Iterations: It is difficult, arguably impossible, to produce a document or a

software system that is exactly what it should be on the first attempt. Rather,

writing and programming are both iterative processes, subject to successive

refinements. Planning, drafting, evaluating, and revising processes do not

occur once and only once but many times and not necessarily in the same

order each time. In writing the computer code to meet the needs of the user,

the requirements of the system, and the constraints under which it must

operate, software developers work iteratively, refining and enhancing the

system at each iteration. In the same way, writers develop documents by

Levine, Pesante, and Dunkle 119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

39

going through drafts or iterations. Each iteration of the document is a

successive approximation that comes closer to the final product, the

purposeful document suitable for the intended audience (Kay 120; Pesante

207; Levine, Pesante, and Dunkle 119).

Approach (Prewriting): Both writers and programmers, prior to actually

writing or programming, must perform an audience/user analysis and a

problem analysis to clearly define their task in view of the goals and

constraints of the project. Effort put into a task at this crucial planning stage

pays large dividends in the process since refinements made at this point are

much less disruptive to the project than refinements that occur at the end.

Specifically, problems in software development are easier and less expensive

to solve during the early stages of development because it is easier to modify a

design than it is to fix a large, complex software system. Similarly, writers

must make deliberate choices about what to attend to in each iteration of a

document in order that they solve higher-level problems before lower-level

problems (Pesante 207; Taylor and Paine 275; Levine, Pesante, and Dunkle

119).

Review: Evaluation is important both in the process of writing and in the

process of software development. Writers and programmers must check their

developing products against the requirements, evaluate their progress against

the original plan, and engage in peer reviews/user testing before finalizing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

40

their products in order to ensure they will satisfy audience/end user needs and

expectations (Pesante 207).

Linear Model: The waterfall phase model, a linear model of the software

development process, demonstrates how software development proceeds

through an orderly and linear sequence from one phase to the next. Although

this model does not accurately reflect the iterative process of developing large

complex software systems, it helps software designers structure their work

and plan effectively. Similarly, linear models of the writing process show an

orderly sequence of phases: (1) prewriting, (2) writing, and (3) revision.

Even though the writing process is generally not linear, the phases of these

models assist writers in structuring or chunking work on a writing project

(Levine, Pesante, and Dunkle 117).

Chunking: The notion of chunking (i.e., dividing a writing project into logical

parts that can be tackled independently) in the writing process is remarkably

similar to the use of subroutines in computer programming, whereby a large

program is divided into smaller “mini-programs” that can later be combined

efficiently into a single, functioning larger software program. CS/CSIS

students can apply the principles behind the familiar software development

strategy of creating subroutines to better manage their writing tasks (Levine,

Pesante, and Dunkle 119).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

41

• Reuse: Reuse is the concept of recycling portions of a computer software

program or an existing document for inclusion in a developing program or

document. However, in order to benefit from reuse, systems or documents

must be composed of modules or components (e.g., subroutines or chapters)

that can be easily inserted into the new system/document. For example, in the

writing process, the writer may reuse or adapt the format, organizational

structure, or rhetorical moves of a model document into an entirely new

document (Levine, Pesante, and Dunkle 119-120).

• Prototyping: Prototyping is the creation of a “reduced functionality version of

a software system early in its development” that allows many software design

activities to be skipped or glossed over (Scacchi 7). The prototypes are then

used to test proof of concept and get early feedback from users, thereby

identifying problems and addressing them early on. Similarly, writers

construct a draft - a reduced but functional version of the document - that

peers can evaluate. Revisions and refinements are then made to the draft.

Another significant commonality between prototypes and drafts is that neither

is thrown away; rather each evolves into subsequent drafts and, ultimately, the

final product (Levine, Pesante, and Dunkle 119-120).

Most of the observations detailed by the researchers above focus on the specific

analogies and techniques educators use in the technical writing classroom to make

connections between the writing process and the software development process for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

42

CS/CSIS majors. The present study seeks to determine whether (1) CS/CSIS students are

aware of the existing overlap in the cognitive structures of computer programming and

writing and (2) whether these students believe the overlapping structures will assist them

in more readily mastering the composition skills and strategies presented in the technical

writing classroom.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

43

Methodology and Procedures

Setting

The study was conducted in various technical writing classrooms at Kenncsaw

State University (KSU) in Kenncsaw, Georgia. The university, a large suburban

institution with a student population of approximately 18,000, is dedicated to remaining

on the cutting edge of technology; therefore, all sections of technical writing are taught in

computer classrooms with state-of-the-art projection equipment. Additionally, to ensure

students receive appropriate guidance and attention from the instructor, class size is

limited to 25 students per section.

The Computer Science and Information Systems Department at KSU requires all

Computer Science (CS) and Computer Science Information Systems (CSIS)

undergraduate majors to take the technical writing course offered by the KSU English

Department; consequently, the overwhelming majority of students in these classes are

CS/CSIS majors. Although the CS and CSIS programs have a different emphasis, both

undergraduate programs are based on a strong technical foundation that includes

programming principles, systems analysis, systems architecture, data communications,

and database design and management. The CS degree program requires more upper-level

mathematics; the CSIS degree program requires additional business courses and includes

more business applications.

Undergraduate CS/CSIS students receive an education that is practical, technical,

analytical, quantitative, conceptual, and current. Upon graduation, these students are

expected to be fluent in Windows, UNIX, Oracle, C++, Java, Visual Basic, and many

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

44

other technologies. Consequently, graduates typically accept positions that include

systems analysis, programming, data communications, end-user support, database

administration, consulting, and top management (Kennesaw State University [KSU]).

Specifically, CS majors at KSU receive a blend of the foundations o f computer

science and applications in the information technology (IT) industry, with an emphasis on

the study of computer systems architecture, software development, and data

communications. Core technology areas include programming, computer architecture,

operating systems, data communication, systems analysis and design, database

applications, and project management. These core areas are supported by a strong

foundation in computing principles, such as the design of programming languages, data

structures, and operating system principles. The program includes a significant

mathematics component, and mathematics concepts are incorporated into many of the

major courses (KSU). Appendix A provides the degree requirements for an

imdergraduate majoring in Computer Science; Appendix B is a sample program of study

for a full-time undergraduate student majoring in Computer Science.

Undergraduates in KSU’s CSIS program receive a solid foundation in IT

principles and practice. Emphasis is on IT applications rather than on the computer itself.

Core technology areas include programming, computer architecture, operating systems,

data communication, systems analysis and design, database applications, and project

management. The program of study also includes practical statistics, IT organizations,

financial systems, and a significant general business component that is integrated into

many CSIS courses (KSU). Appendix C provides the degree requirements for an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

45

undergraduate majoring in Computer Science Information Systems; Appendix D is a

sample program of study for a full-time undergraduate student majoring in Computer

Science Information Systems.

Based on the program of study required of CS/CSIS majors at KSU, these

students, by the time they enroll in the technical writing course (usually in their junior or

senior year), typically possess the requisite knowledge of computers and computer

programming necessary to provide insightful and valuable responses to the questions

posed in both the surveys and interviews relative to this study. Consequently, CS/CSIS

majors enrolled in technical writing at KSU proved an excellent pool of subjects.

Participants

Lincoln and Guba note that, when selecting participants, “the sample is to be

selected in ways that will provide the broadest range of information possible” (102). This

notion has been followed in the selection of participants for this study. Although this

study is limited to a particular subset of university students (i.e., CS/CSIS majors),

attempts were made to accommodate "the broadest range" by purposefully seeking out a

setting in which the greatest diversity of CS/CSIS majors would be represented.

Specifically, a writing course that all CS/CSIS majors are required to take was selected,

resulting in a population of subjects that mimics the diversity o f the population of majors

within the Computer Science and Systems Information Department overall.

All subjects who participated in this study were enrolled in a section of English

3140, Technical Writing, at Kennesaw State University during the Fall 2003 or Spring

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

46

2004 semester. Each section met once a week for one hour and fifteen minutes over a 15-

week semester; students were required to engage in class activities online in lieu of a

second classroom meeting. During the Fall 2003 semester, four sections of technical

writing were offered at KSU. Appendix E provides a sample syllabus from one of these

sections. Because of scheduling conflicts, only one of those sections was available for

participation in this study. Of the 25 potential subjects from that section, only 13

completed both the pre- and post-test questionnaires. Consequently, the pool of subjects

was significantly smaller than had been originally anticipated. To compensate for the

small number of participants, the researcher elected to gather additional data in the Spring

2004 semester. Two sections of the technical writing course taught during Spring 2004

participated in this study at the discretion of the technical writing instructor for each

section. Of a potential 50 subjects, 33 completed both pre- and post-tests (the remaining

17 were lost to attrition or declined to participate in the research study), bringing the total

number of subjects for this study to 47.

Although the technical writing course is open to all KSU students, the Computer

Science and Systems Information Department requires all o f its majors to take this

course. Consequently, CS/CSIS majors typically constitute the overwhelming majority

of students in these courses - which proved true for the subjects of this study, 96% of

whom were CS/CSIS majors. Given the large proportion of CS/CSIS majors among the

total subjects, it was anticipated that the demographics of the study participants would

reflect that of CS/CSIS majors overall. However, this expectation was only partially met

in terms of gender (64% of the subjects were male, 36% female), whereas ethnicity (78%

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

47

Caucasian, 26% minorities) and citizenship (91% U.S. citizens, 9% non-U.S. citizens)

were more in line with the demographics of the general KSU population.

The most recent data on the student population at KSU (Fall 2004) indicates that

women outnumber men by a ratio of nearly 2:1 (62% women, 38% men), an

overwhelming majority of the student body is Caucasian (80%), and 91% are U.S.

citizens. Meanwhile, within the Computer Science and Information Systems Department,

men outnumber women by a ratio of nearly 3:1 (78% men, 22% women) - the inverse of

the general student population. Caucasians constitute the majority of CS/CSIS students

(70%) but to a lesser degree than in the general student population (KSU, “Fact Book”;

KSU “Computer Science and Information Systems Department”). Figure 2 provides a

graphical representation of a demographics comparison among study participants,

CS/CSIS majors, and the general KSU student population.

Other relevant demographics data were also retrieved in the study. Specifically,

19% of the participants spoke English as their second language, most were

upperclassmen (17% juniors; 72% seniors), and all had completed prerequisite English

courses. Only one student had taken an additional writing course (in Communications).

Of the 47 subjects, 36% were currently employed in their major or had prior work

experience in their field, and 25 subjects (53%) stated that they currently or in a previous

position were required to perform on-the-job writing tasks. Five subjects (11%) had

more than 10 years of experience writing work-related documents, three (6%) had 6-10

years of experience, ten (21%) had 3-5 years of experience, and 7 (15%) had less than

two years of experience writing on the job. When asked to assess their own writing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

48

abilities, 4% of the subjects believed their writing ability to be excellent, 53% rated their

ability as good, 32% thought their writing was only adequate, and 11% described their

writing as fair.

Figure 2; Demographics Comparison

100%

90%

80%

70%

60%

50%

40%

30%

20%

11

10%

^ ^ cr >•

A self-assessment of computer programming skills provided somewhat different

results: 19% of the subjects believed their computer programming skills to be excellent,

19% rated their skills as good, 38% thought their programming skills were only

adequate, 13% described their skills as fair, and 11% claimed their computer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

49

programming skills were poor. When asked to cite the computer programming

languages in which they are fluent, 22 subjects (47%) listed Java, 16 (34%) HTML, 16

(34%) C++, and 8 (17%) Visual Basic. Other languages cited by only one or two

students include Perl, Cobol, ALGOL, and ASP. In a follow-up question, subjects were

to indicate those computer programming languages with which they were familiar but not

fluent. In response, 13 subjects (28%) cited Java, 17 (36%) HTML, 14 (30%) C++, and

18 (38%) Visual Basic. Other languages with which students expressed some familiarity

include Perl (5), Cobol (7), ALGOL (1), FORTRAN (6), Pascal (6), Ada (5), LISP (3),

and PROLOG (2).

Instmments

Data was collected in the form of pre- and post-test questioimaires and via

interviews. At the start of the semester, subjects completed (1) a demographics

questionnaire (Appendix F) and (2) a pre-test self-reporting questionnaire (Appendix G)

designed to collect information regarding subjects’ perceptions of their writing skills,

their expectations regarding the technical writing course, and their perceived connections

between programming and writing and between natural and artificial languages.

Near the end of the semester, subjects completed a post-test self-reporting

questionnaire (Appendix H). The questions in this document paralleled those in the pre

test questionnaire in order to determine whether subjects’ attitudes and perceptions

changed during the course of the semester. Additionally, five subjects were selected at

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

50

random to participate in follow-up interviews that allowed them to elaborate on the topics

addressed in their post-test questionnaires.

Data Collection

The pre- and post-test questionnaires, administered as part of this research study,

produced sufficient quantitative data to allow for a general overview of participants’

attitudes and perceptions regarding commonalities between computer programming and

writing and between artificial and natural languages. However, the findings from this

research with perhaps the greatest practical applicability in the writing classroom were

derived from follow-up questions and interviews, which offered tremendous insight into

students’ perspectives.

This study was largely qualitative because the researcher ascribes to the belief

system of naturalistic inquiry and believed that the research questions could best be

answered by collecting data in this manner. According to Lincoln and Guba, five beliefs

are central to naturalistic inquiry; all five were adhered to in this study:

• Axiom 1 - The nature o f reality: realities are multiple, constructed, and

holistic

• Axiom 2 - The relationship of knower to the known: knower and known are

interactive, inseparable

• Axiom 3 - The possibility ofgeneralization: only time and context-bound

working hypotheses are possible

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

51

® Axiom 4 - The possibility o f causal linkages: all entities are in a state of

mutual simultaneous shaping so that it is impossible to distinguish

causes from effects

• Axiom 5 ~ The role o f values in inquiry: inquiry is value-bound

(37-38)

Additionally, Lincoln and Guba describe fourteen “characteristics o f operational

naturalistic inquiry” that “display a synergism such that, once one is selected, the others

more or less follow.” The fourteen characteristics, along with a short description of how

they were applied in this study, are as follows (39-43).

1. Natural Setting: The phenomena of the study take their meanings as much

from their contexts as they do from themselves. Consequently, care was taken

not to influence students’ perceptions of the topics being investigated in order

to obtain the truest data from their responses, as emerged within the natural

context of the classroom environment.

2. Human Instrument: The human instrument has the characteristics necessary to

cope with an indeterminate situation. In this study, the instructor and the

students contributed to the overall making of meaning.

3. Utilization o f Tacit Knowledge: Tacit knowledge is experiential knowledge or

commonsense, which is intuitive and felt. Such knowledge was useful in

phrasing follow-up questions and interview questions in order to elicit

meaningful responses from study participants.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

52

4. Qualitative Methods: Lincoln and Guba contend that the “human-as-

instrument is inclined toward methods that are extensions of normal human

activities: looking, listening, speaking, reading, and the like.. . . [T]he

human will tend, therefore, toward interviewing, observing, mining available

documents and records, taking account of nonverbal cues, and interpreting

inadvertent unobtrusive measures” (199). Consequently, follow-up questions,

interviews, group discussions, and observation were used to gather data to

answer the research questions of this study.

5. Purposive Sampling: Based on informational rather than statistical

considerations, purposive sampling is done for a specific purpose - to

maximize information, not facilitate generalization. Such sampling depends

on the flow of information as the study is conducted rather than on prior

considerations. Given this, the data for this study was collected exclusively

from students taking the KSU English 3140 Technical Writing course in order

to assure a subject pool that would provide the most valuable data in response

to the research questions posed in this study.

6. Inductive Data Analysis: This analysis is the process o f making sense o f field

data (interviews, observations, documents, imobtrusive measures, nonverbal

cues, and other information pools). For the purpose of this study, data were

analyzed on an ongoing basis in order to note the evolution of the study.

7. Grounded Theory: Grounded theory is the theory that emerges from the data

as opposed to have an a priori theory drive the data collection. Such a process

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

53

handles multiple realities and makes transferability dependent on local

contextual factors. The data collected in this research study were used to

develop a theory that responds to the questions that drive this study and to

shape new ones in order to explain what was observed.

8. Emergent Design: Emergent design is the notion that the study must “emerge

(flow, cascade, unfold)” rather than be constructed a priori “because it is

inconceivable that enough could be known ahead of time about the many

multiple realities to devise the design adequately” (41). Therefore, it was

anticipated that this study would evolve and grow - changing as quickly as

needed to more completely describe what was being observed. In the ease of

qualitative research, change is a good thing.

9. Negotiated Outcomes: The participants of the study were permitted to see and

comment on the findings. It is their realities that this research sought to

reconstruct, and the quality of the findings depended on the interaction

between the knower and the known.

10. Case Study Reporting Mode: The ease study reporting mode is ideal for

providing thick description. This mode is highly responsive to Lincoln and

Guba’s five axioms of the naturalistic paradigm, and it is an ideal vehicle for

communicating with the subject. Although case studies were initially planned

as part of this research study, they were deemed counterproductive (i.e., they

could potentially have tainted post-test data) during the Fall 2003 semester

and were not conducted in either the Fall or the Spring semester.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

54

11. Idiographic Interpretation: Idiographic interpretation states that what is

found in a particular context has meaning only for that context during that

particular time. This concept is particularly meaningful for this research

investigation since each subject brought to the study a unique knowledge and

experience base that informed his or her mastery of writing. Consequently,

the data were interpreted specifically within the context in which they were

gathered and during the particular time of the study.

12. Tentative Application: The concept of tentative application is that the findings

of a particular study cannot be generalized to other contexts although

information supplied from one study may make possible a judgment of

transferability to another similar context. In drawing conclusions from the

data gathered in this study, care was taken to avoid making broad

generalizations and applications of the findings.

13. Focus-Determined Boundaries: The term “focus-determined boundaries”

refers to the inquiry boundaries set “on the basis of the emergent focus . . .

because that permits the multiple realities to define the focus (rather than

inquirer preconceptions)” (Lincoln and Guba 42). In keeping with the

establishment of such boundaries, this study was limited to the perceptions

and perspectives of CS/CSIS majors participating in a technical writing

course. Specifically, the study sought to determine if the subjects noted any

similarities between computer programming and writing in order to facilitate

their mastery of technical writing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

55

14. Special Criteria for Trustworthiness: Lincoln and Guba suggest credibility in

place of internal validity, transferability in place of external validity,

dependability in place of reliability, and conformability in place of objectivity

to achieve trustworthiness o f data and the findings. To achieve such

trustworthiness, the researcher engaged in persistent observation,

triangulation, and member checking in conducting this study.

Data Sources. Collection Strategies, and Triangulation

To answer the questions posed in this study and to further describe those that

emerged during the course of the research, three data collection methods were used.

These were selected in order to maintain multiple sources of evidence and to increase the

strength and the credibility of the study (Lincoln & Guba 1985, Erlandson et al. 1993,

Stake 1995). These methods include: (1) questionnaires (demographics, pre-test, and

post-test), (2) follow-up questions, and (3) interviews.

Questionnaires

The questionnaires used in conducting this study were designed to elicit both

quantitative and qualitative data through the use of, respectively, a Likert scale and open-

ended questions. Though qualitative methods of research are typically associated with ■

the naturalistic-constructivist type of study described here, Erlandson et al. note that

“mainstream researchers regularly use qualitative methods, and naturalistic researchers

will often use quantitative methods” (35). Consequently, the methods of data-gathering

and the type of data gathered were deemed to be in keeping with the research paradigm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

56

used in this study. Additionally, Erlandson et al. argue that it is not whether both

quantitative and qualitative measures are used to gather data nor the order o f the

measures used that distinguishes naturalistic studies from more conventional studies.

Rather, what is crucial here is “whether the combined measures are designed to reduce or

expand the constructions of reality that are being considered” (37).

Follow-Up Questions

Follow-up questions were developed for each subject selected as an interviewee.

These questions were formulated based on the quantitative responses on the pre- and

post-test questionnaires. The answers students provided to the follow-up questions

helped shape the final interview questions and allowed for more in-depth dialogue

between the researcher and the subjects.

Interviews

Interviews with students played a significant role in the data collection process for

this research. Interviews, as noted by Lincoln and Guba, have the advantage of allowing

respondents “to move back and forth in time - to reconstruct the past, interpret the

present, and predict the future, all without leaving a comfortable armchair” (273).

Interviews were conducted with five students selected at random; these interviews

provided a means of triangulating the data gathered from questionnaires and follow-up

questions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

57

Data Analysis

Since several methods of data collection were used in this study, several stages of

analysis were necessary. Specifically, Miles and Huberman state that data analysis

consists o f three activities that flow together: “data reduction, data display, and

conclusion drawing/verification” (10). These three stages were applied to the

management of the data in this research investigation.

Stage One: Data Reduction

Data reduction is the process of selecting, focusing, simplifying, abstracting, and

transforming the data gathered in the research study. According to Miles and Huberman,

“data reduction is a form of analysis that sharpens, sorts, focuses, discards, and organizes

data in such a way that final conclusions can be drawn and verified” (11); they further

suggest that data can be reduced through selection and summary, and by being subsumed

in a larger pattem. Their conclusions suggest that any research is best served by

eliminating irrelevant information; consequently, irrelevant data were deleted during the

analysis stage of this study, resulting in considerably fewer subjects than initially

anticipated. Additionally, the data were organized into an electronic spreadsheet that

facilitated a close and thorough examination.

Stage Two: Data Display

Data display refers to the ways in which data can be organized, compressed, and

assembled in order to reach conclusions about the message that data has to convey. Miles

and Huberman state that displays are "designed to assemble organized information into

an immediately accessible, compact form so that the analyst can see what is happening

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

58

and either draw justified conclusions or move on to the next step of analysis that the

display suggests useful” (11). Further, they suggest that a display will place the data in a

visual format so that the viewer can “draw valid conclusions and take needed action”

(91).

In Stage Two, the data entered into the electronic spreadsheet were matrixed such

that they could he visually organized to display multiple data sets for analysis. For

example, graphs, tables, and charts were created to allow for an examination of the data

from a variety of perspectives in order to make possible meaningful insight into emerging

patterns and trends. Using a computer to capture and depict the data in different visual

arrays proved to be the best means for identifying and defining emergent patterns in this

study.

Stage Three: Conclusion Drawing and Verification

In stage three, a number of visual representations, produced to view the collected

data, served as the springboard from which conclusions about findings were drawn. Miles

and Huberman state that qualitative analysts decide what their observations mean from

the first “chunk” of data that is collected; however, final conclusions are not drawn until

the data collection process is complete.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

59

Description and Discussion of the Data

The data gathered in this study are both quantitative and qualitative. The

quantitative data can be broadly divided into three categories; demographic information

(used to classify subjects and to assist in interpreting qualitative findings); self-

assessment of computer programming abilities and writing abilities; and responses to pre-

and post-test questionnaires designed using a Likert scale to elicit students’ level of

agreement or disagreement with statements related to writing, computer programming,

and the relationship between the two. The first two categories were described above in

the discussion regarding study participants; the responses to the pre- and post-test

questionnaires are discussed below. The qualitative data is drawn from written responses

to the questioimaires (wherein students were asked to elaborate on the responses

indicated on the Likert scale), follow-up questions, and student interviews.

Likert Responses

The first part of the pre- and post-test questionnaires asked students to respond,

using a Likert scale, to statements regarding their writing skills, computer programming

skills, and their perceived relationship between the two. Figure 3 presents the averages of

student responses to the pre- and post-tests; it also shows the degree of change in

students’ attitudes between the pre- and post-tests.

Students’ level of agreement changed for each of the eight statements from pre- to

post-testing. These differences range from 0.06 to 0.92. For three statements (7, 2, and 6

~ listed in descending order), student agreement increased; for the remaining five

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

60

statements (3, 1, 8,4, and 5 - listed in descending order), the level of agreement

decreased from pre- to post-testing. The slight change in students’ attitudes from pre- to

post-testing suggests study participants’ perceptions were only mildly affected, if at all,

by their participation in a semester-long writing course' .̂ Although the slight change in

students’ attitudes does not seem particularly remarkable, some apparent contradictions

in students’ responses to these two questionnaires warrant a closer examination.

Figure 3; Pre- and Post-Test Comparison of Quantitative Data

Pre/Post Test Resoonses Pre-Test Post-Test Difference*

1 Writing skills may/did improve. 8.43 7.96 (0.47)

2 Existing knowledge base may/did contribute to my ability to
master the writing skills and strategies presented in this course. 7.19 7.87 0.68

3 My understanding o f computer languages may/did assist me in mastering
the strategies o f effective technical and professional writing.

6.07 5.15 (0.92)

4 I believe many strategies for writing may be/are similar to the
strategies used to write computer code.

5.6 5.3 (0.30)

5 I believe I might better understand the mles o f grammar and the theories
o f composition if the instructor used analogies related to programming
languages to make connections that relate to me.

4.8 4.51 (0.29)

6 I believe the rules o f grammar may be similar to the rules that govern
computer programming.

5.46 5.53 0.07

7 I believe there is little or no similarity between computer
programming languages and the English language.

4.77 5.66 0.89

8 The writing process I used to write an essay may/did change because
o f the writing strategies and theories I will/did leant in this course.

7.74 7.38 (0.36)

*Note: parentheses indicate a decrease from pre- to post-testing.

A conscious effort was made by the researcher not to influence subjects’ perceptions o f any connection
between programming and writing; consequently, no specific discussions regarding the potential
similarities between the two were conducted prior to the post-test.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

61

First, although the post-test questionnaire indicated an increase in students’

perception that their existing knowledge base could/did contribute to their ability to

master writing skills and strategies, it also showed a decrease in students’ belief that their

understanding of computer languages - arguably a component of their knowledge base -

could facilitate their mastery of these same skills and strategies. Second, the end-of-the-

semester post-test questionnaire reflected an increase (albeit slight) in students’

perception that the grammar rules of computer programming languages may be similar to

the grammar rules of the English language, yet students’ belief that there is “little or no

similarity between computer programming languages and the English language”

increased and their perception that analogies related to programming languages might

help them master writing decreased. Finally, although students indicated an increased

belief in the similarity of grammar rules between computer programming languages and

the English language, their post-test questionnaire responses revealed a decreased

perception that strategies for coding computer programs were similar to those used in

writing using natural language. These contradictions will be explored more fully in

“Findings and Key Recommendations.”

Written Comments and Interview Responses

The qualitative data was gathered from pre- and post-test questionnaires, follow-

up questions, and interviews with students. An item-by-item analysis of participants’

responses to the pre- and post-test questionnaire statements follows.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

6 2

Statement 1, My writing skills may/did improve, elicited a fairly high level of

agreement from subjects on the pre-test questionnaire. On the post-test questionnaire,

study participants rated their overall writing improvement as less than they had

anticipated on the pre-test, yet they were able to cite specific ways in which their writing

had improved (e.g., “learned to gear my writing towards my audience better,”

“communicate more efficiently,” and “grammar, punctuation”). This seeming

discrepancy may perhaps be explained by their increased knowledge of correct writing,

grammar, and punctuation yet still inexperienced ability to apply that knowledge in order

to correct their own writing errors. As one student noted in his interview, “I learned my

faults in my writing style but have yet to fix the problem.” Alternatively, perhaps

subjects realized that writing is not a “problem” that can be solved once and for all but

rather a skill that can be continually improved upon, thereby making it more difficult to

accurately quantify their degree of improvement.

Statement 2, My existing knowledge base may/did contribute to my ability to

master the writing skills and strategies presented in this course, was purposely vague to

determine whether the students perceived a knowledge of computer programming as a

potential asset to them in a writing course. Although there was a slight increase in

subjects’ agreement with this statement from pre- to post-testing, none of the respondents

explicitly cited their experience with computer programming as part of the existing

knowledge base that might assist them. Comments ranged from broad and imprecise

(e.g., “college education; past experiences” and “I think existing knowledge always

contributes to further leaming”) to much more specific (e.g., “many years o f experience

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

63

in various business environments” and “a basic understanding of syntax”). Only one

subject, perhaps based on his perception of what is entailed in a technical writing course,

even remotely connected knowledge from his major field of study to writing: “My

knowledge of IT systems will aid in my writing because its terminology will be use in the

writing. My knowledge of operating systems and applications will help with my

writing.”

A more focused follow-up to the preceding item, Statement 3, My understanding

o f computer languages may/did assist me in mastering the strategies o f effective technical

and professional writing, was an attempt to direct subjects’ responses toward an area

particularly relevant to this study: a potential link between an understanding of computer

programming languages and mastery of writing skills and strategies. Additionally,

students were asked to list, and in later interviews elaborate on, the specific artificial

languages and elements of those languages that they thought were most beneficial in

helping them to master writing skills and strategies.

In the pre-test, subjects indicated that their attitudes toward this statement were

fairly neutral, albeit with a slight leaning toward agreement, and knowledge of the

programming language Java was most frequently cited (11 occurrences) as likely be an

asset to students in a technical writing class. C++ was cited by eight respondents, and

other languages mentioned by only one or two subjects include COBOL, HTML, Eiffel,

SQL, Perl, Visual Basic, and ASP. Some respondents elaborated on their selections,

claiming that “maybe Java computer language will help because it is organized and well

indented” and that “COBOL is a procedural language and very structured in its syntax.”

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

64

Others offered more general observations that suggested an agreement with the notion

that computing languages can be an asset in understanding writing strategies, such as

“Writing programs requires following a logical path which can be applied in technical

writing”; still others stressed their lack of agreement with this notion, noting that

“concepts such as transition and document flow are not naturally associated with

programming.”

In the post-test questionnaire, Statement 3 witnessed the most dramatic change (a

9% shift) o f the eight statements on the questionnaires. Subjects’ attitudes from pre- to

post-testing remained essentially neutral, albeit now with a slight leaning toward

disagreement, and Java remained the most cited language as having the potential to assist

students in understanding writing concepts. SQL and C++ were each mentioned one

time; all others were no longer cited. Again, some subjects offered explanations for their

choices. One supported his claim that Java is useful because of its “regular logical

semantics structure,” and another stated that SQL has a “syntax [that] helps one write

better.”

In response to follow-up questions and in their interviews, respondents offered

their perspectives on how/why they believe (or do not believe) knowledge of computer

programming can assist CS/CSIS students in mastering writing skills. While some of

these responses were rather broad generalizations, such as “step-by-step approach to both

coding and writing,” “logically structured,” and “none; don’t think that it really relates,”

others offered tremendous insight into students’ perspectives and perceptions:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

65

There is no question that to be a good programmer you should be a good
writer because detail is very important. However, I don’t believe that the
reverse is true.

I think the process I have gathered as a computer science major has
assisted me (not a particular language). I am more aware of the logical
order in which I should write to help others understand a new process.
Programming requires specific rules to be followed or it won’t compile.
English is the same way.

Understanding that you write the code so that the computer understands
and is useful. In English, you have to communicate in a manner that the
audience understands.

Statement 4 ,1 believe many strategies for writing may be/are similar to the

strategies used to write computer code, was intentionally vague to allow respondents

flexibility and creativity in interpreting the statement and responding to it. Although this

tactic elicited confusion from a few subjects (e.g., “Do not understand” and “Not sure”),

the majority of the subjects offered surprisingly consistent responses.

In the pre-test questionnaire, the Likert scale revealed that respondents were

overall neutral on this topic, with a slight tendency toward disagreement. Yet, in the

comments portion of the questionnaire, nearly two-thirds of them were able to cite

specific strategies or concepts that are similar in writing and computer programming.

(This apparent contradiction will be addressed more completely in “Findings and Key

Recommendations.’*) These similarities can be divided broadly into three major

categories, identified here in composition terms as (I) prewriting, (2) organization, and

(3) syntax. The post-test showed similar findings, with a slightly increased tendency

toward disagreement (as indicated by the Likert scale); the written comments on the post

test, the follow-up questions, and the interviews again fell into the three broad categories

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

6 6

identified above, although in different proportions. In the pre-test, five subjects indicated

that elements of prewriting were common to both computer programming and

composition; in the post-test/interviews, twelve respondents saw such a connection.

Organization, on the other hand, remained a constant factor, with five subjects citing it in

the pre-test and five in the post-test/interviews. The final item cited by more than one

respondent, syntax, was mentioned by two respondents in the pre-test and two in the post

test. Figure 4 presents a sampling of student responses from these three categories.

Other students chose to introduce terms from their knowledge of computer

programming to create analogies (e.g., “Developing classes reminds me of outlining a

paper” and “Outlining is similar to writing pseudo-code"), while still others noted that

they saw no specific similarities at all.

On the pre-test questionnaire, Likert scale responses to Statement 5 ,1 believe I

might better understand the rules o f grammar and the theories o f composition if the

instructor used analogies related to programming languages to make connections that

relate to me, revealed a slight tendency toward disagreement; the post-test indicated a

slight increase in this disagreement. In the comments portion of the questionnaires and in

follow-up questions and interviews, subjects were to provide examples of programming

analogies that would help them better understand composition. Most respondents had

difficulty identifying such analogies; only five offered specific analogies;

Relational modeling (UML).
Operators & syntactical units: clauses, subject-predicate, prepositions, etc.
There are grammar rules in programming that would help.
Describe grammar logically as adhering to a highly structured set of

specifications.
Re-emphasize that it all follows a rule and/or pattem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

67

Figure 4: Student Responses to Statement 4

1 Categories Subject Responses j
Prewriting Break it down; what are the steps.

Audience considerations and breaking a problem into smaller pieces are
shared components of both.

You have to plan out your code before you write it, the same as you need to
plan your paper.

When writing code, you start with planning before coding. In writing, you
write an outline before writing a paper.

The processes are similar, like brainstorming, outlining, etc.

The main similarity is the existence of the planmng process and its impact
on the final product.
You must understand how the computer/audience must get the data.

You have to define what you want out of each before you start.

You need to plan what will be said in both cases before you start.

Organization Just as you would outline a paper in order to gather your thoughts, one
should take the same approach with coding.

Writing programs requires following a logical path which can be applied in
technical writing.

Proper order.

Logical organization.

Mainly in organization (e.g., programs have to be written with a certain
flow in mind). I have found in this course it helps to create an outline
before writing.
The order in which a written document is put together follows certain
guidelines, much like the layout of a program.

The logical flow of statements in both (grammar).

Strategies to write include how to set up a paragraph, and coding requires
certain flow for a program.

Syntax Syntax = grammar rules.
They have a certain structure and punctuation.

Use of syntax.

You have to have the right syntax or the code will not work. |

The remaining respondents, for the most part, were uncertain of how to respond,

saw no analogies between the two, or doubted that such analogies would be an asset.

Others were cautiously optimistic (e.g., “I don’t see how this would help, but Fm open to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

68

trying anything”) or identified potential pitfalls of such a practice (e.g., “I think the non

technical majors wouldn’t understand”). One subject even claimed that the analogies

should work in the opposite direction: “Programming teachers should use analogies

relating to composition.”

Responses to Statement 6, 1 believe the rules of grammar may be similar to the

rules that govern computer programming, changed slightly toward agreement (0.07)

between the pre- and post-tests but essentially reveal a stable neutral response from the

study participants. Despite a lack of strong agreement with this statement, subjects were

able to cite several examples of computer programming rules that are similar to the rules

of English grammar. The most frequently cited example (nearly 20 comments) was

syntax:

Punctuation, structure.
If you don’t write the code according to syntax, it is useless. The same

concept applies to English.
When writing code, punctuation is critical for execution in the program.
Grammar has rules that must be followed which is similar to syntax when

you have to write in a specific way that the computer understands and
can read.

You have to be clear and concise in writing in either case. There are very
specific rules for both.

Each has specific syntax and specific use to receive the required outcome.
Commas and semicolons.

However, a variety of other similarities - and in some cases differences - were

noted as well:

Programming syntax is much stricter.
Higher level programming languages are more similar to grammar than

computerational (sic) techniques.
There are fewer exceptions in programming. For example, compare “ie”

rules to the use of the in C++. Also, I think this comparison may
confuse some since the punctuation often exists in both.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

69

The English language ideally should be able to be parsed into syntactic
units just as compilers parse code.

Classes => nouns; operations => verbs.
In grammar you must have a subject and a verb; likewise, in programming

you must have a method and a procedure.

For Statement 7, 1 believe there is little or no similarity between computer

programming languages and the English language, there was a noticeable change in

subjects’ attitudes between the pre- and post-tests - nearly a full point toward agreement,

bringing the general sentiment to a more neutral perception of this issue. Students were

also asked to provide arguments or explanations for why they agreed or disagreed with

Statement 7. Figure 5 presents respondents’ comments divided into categories of No

Similarities, Neutral, and Similarities.

Statement 8, The writing process I used to write an essay may/did change because

o f the writing strategies and theories I will/did learn in this course, though similar to

Statement 1, is meant to focus more on the overall process of writing rather than on

specific writing skills. Though there was a slight decrease in agreement from the pre- to

post-test questionnaire, the overall perception seems to be that respondents expected their

writing process to change during their participation in the technical writing course and

that this expectation was duly met.

As a follow-up question to Statement 8 and a topic of discussion in interviews,

students were asked to indicate the specific ways their writing process had changed.

Though a few respondents indicated that their writing process had not changed, the

majority commented that they had altered the prewriting stage of their composing process

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

70

as a result of the technical writing course - particularly, in terms of writing for a specific

audience and planning/outlining their documents:

I gear my papers more to the appropriate audience.
Know your audience.
I now plan before I start and I consider who I am writing for.
Better planning before starting the writing process; use of outline to help in

the planning process.

Figure 5: Students’ Comments in Support of Statement 7 Responses

No Similarities English is not objective enough.

English is more free flowing.

I do not see many similarities. Programming is very logical and has strict rules.
English has too many exceptions to the rule to be similar to programming
languages.

English is too complex; much ambiguity.

English is a bit more difficult to master.

It is a different language by definition. If we could code in English we would be
doing it. Computer languages are not at all like the English language.

English is too vague to be strongly related to a programming language.

I believe Boolean logic is most commonly used in programming, and the
true/false nature of this logic is very different from the shades of gray one finds
in English.

Writing English is totally different than programming with a computer language.
I do not have to know grammar, it [coding] is more fun, and it is challenging.

Each computer language has its own structure, just as English does.

Neutral Depends on what type of writing one might attempt.

It depends on what programming language one is using. Higher-level languages
are closer to plain English than lower-level languages.

Punctuation is used very differently between the two. However, I also disagree
because there is a definite protocol to both.

Similarities Programming statements tend to follow English for clarity and ease of use.

They are both ways to communicate, just with different audiences.

We write code based on grammar principles.

Write from left to right.
You have to learn it in the manner it is taught. Code is useless without syntax, as
is English.

Many programming languages and codes are very understandable because it is
the English language.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

71

The responses to the questionnaires, both revealing and enlightening, raised two

additional questions that were presented to subjects during interviews:

1. How has your approach to composition been affected by your knowledge and
understanding of computer languages and computer programming, if at all?

2. How has your approach to computer programming been affected, if at all, by
the writing strategies, grammatical rules, and composing process presented in
this technical writing course?

In response to the first question, interviewee comments were quite diverse. One

respondent stated that he believed his computer programming skills provided him the

ability to “handle large ideas as fairly self-contained components.” Specifically, he was

able to relate the practice of writing numerous subroutines for a large program to the

similar task of collaborative writing wherein members of a group or team each write a

section of a larger document by first breaking it into more manageable, logical pieces.

Another subject stated that she applied her practice of writing pseudo-code before

programming to her writing assignments by writing outlines prior to drafting a document

- something she was previously not in the habit o f doing. Other respondents noted that

they carried over the concepts of organization, structure, grammatical rules, and patterns

from the study of computers and applied these concepts to their writing assignments.

Regarding the question of whether the skills and strategies learned in the technical

writing course had any impact on their approach to computer programming, one of the

subjects stated that he did not believe his writing skills could contribute to his ability to

program; another thought programming and writing complemented one another but was

unable to verbalize any specifics. Of the three remaining interviewees, one noted that the

study of writing made her “logically think about where [she] should place punctuation -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

72

which is important in programming because if you forget a comma or appropriate

punctuation, the program won’t run.” Another interview participant found paragraph

development to be “similar to writing functions” when programming. Consequently, he

believed that his knowledge of paragraphing improved his ability to write functions. The

final interviewee was only able to state in broad terms that the knowledge he acquired in

the technical writing course helped him “to understand items in a sequence and with a

specific syntax.”

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

73

Findings and Key Recommendations

The purpose of this study was to determine (1) whether Computer Science (CS)

and Computer Science Information Systems (CSIS) majors recognize the overlapping

cognitive structures that exist between computer programming and English composition

and (2) whether these students believe that the overlapping cognitive structures assist

them in mastering the writing skills and strategies presented in a technical writing course.

However, the study itself was permitted to drive the direction of the research, and the

scope was accordingly expanded to include an examination of numerous other

similarities between programming and writing in order to facilitate the research questions

that evolved from the preliminary findings.

In preparing and conducting this study, the researcher had certain expectations

regarding research participants that were not realized. Specifically, the researcher

expected (1) that study participants would see analogies between writing and computer

programming (e.g., process, grammar, and language similarities) and (2) that such

analogies would matter to them. Study participants’ failure to meet these expectations

opened a previously unforeseen avenue for exploration into the value of CS/CSIS

analogies in the technical writing classroom. Furthermore, the researcher also had

anticipated that study participants’ perceptions, as revealed through the pre- and post-test

questionnaires, would show a more substantial shift than this study revealed -

presumably in ways that affirmed students’ recognition of and appreciation for

similarities in the study of composition and their studies in their major disciplines.

Although none of these expectations were realized, the findings of this study may be,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

74

arguably, much richer, more diverse, and more useful than had originally been

anticipated.

Findings

This research study produced unexpected, and at times contradictory, results.

These results are analyzed in detail below.

1. Although the post-test questionnaire indicated an increase in students’

perception that their existing knowledge base could/did contribute to their

ability to master writing skills and strategies, it also showed a decrease in

students’ belief that their understanding of computer languages - arguably a

component of their knowledge base - could facilitate their mastery of these

same skills and strategies. This shift in students’ attitudes suggests that (1)

they recognize existing knowledge can be called upon and applied to new

academic challenges, yet (2) they cannot identify any computer programming

skills or strategies that are transferable to writing. This finding demonstrates

that while similarities, analogies, and overlapping cognitive structures

between writing and computer programming are obvious to many instructors

(e.g., Hyler 1985; Pesante 1991; Levine, Pesante, and Dunkle 1991; Taylor

and Paine 1993; and Kay 1998), they are not necessarily apparent to the

CS/CSIS students studying writing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

75

2. The end-of-the-semester post-test questionnaire reflected study participants’

increased belief in a similarity between the grammar rules o f English and

those of computer programming languages, yet participants professed a

decreasing belief that the English language and computer programming

languages are similar and indicated a decreasing perception that computer

programming analogies might help them master writing. That is, they

recognize grammatical similarities between natural and artificial languages,

but they are unable to see the overall likenesses between the two types of

languages, nor how those likenesses might suggest transference o f concepts

(and/or the application of cognitive structures). Thus, participants see

similarities at a lower-order level of reasoning (e.g., in applying syntax rules)

but are unable to recognize parallels at higher-order levels o f reasoning (e.g.,

at conceptual levels). Although these results are at odds with one another, they

have signifieant implications for the classroom, particularly in regards to

students’ learning styles and the design of the writing course.

3. Though participants recognized a similarity between the syntax of computer

programming languages and that of the English language, post-test

questionnaire responses revealed a decreased student perception that strategies

for programming were similar to those used in writing. As in Finding 2

above, students recognize grammatical similarities between natural and

artificial languages, but they profess an inability to identify similarities in the

processes these different types of languages use. This finding, again, suggests

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

76

that while CS/CSIS students attend to lower-order level o f reasoning

similarities between natural and artificial languages they are less adept at

recognizing overlaps at a higher-order level of reasoning. That is, they do not

recognize the conceptual, abstract commonalities that exist between the

processes of coding and writing. The implications for a technical writing

course are discussed in Key Recommendations.

4. Despite the observations and findings of academic scholars and researchers

that indicate numerous commonalities between natural language and computer

programming languages and between the writing process and the software

development process, the majority of these similarities are not readily and

consciously apparent to the CS/CSIS students who participated in the current

study. Furthermore, students’ participation, during the course o f the current

study, in a technical writing class that did not include explicit mention o f such

similarities apparently did little to increase their ability to recognize the

commonalities that have been identified by researchers.

5. Although researchers have identified analogies between natural and artificial

languages and between writing and computer programming and although

some researchers have successful used these analogies to teach writing skills

and strategies to CS/CSIS students, most of the CS/CSIS students in the

current study did not believe such analogies would be useful to them in

mastering writing. Despite the fact that they perceived analogies to be o f little

value, a few study participants were able to identify analogies, often the same

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

77

ones that had been identified by instructors and researchers. These findings

indicate that CS/CSIS students are able to make connections (i.e., recognize

analogies) between writing and coding regardless of whether they find any

value in acknowledging those connections; furthermore, the findings suggest

that perhaps students are applying analogies of which they are not consciously

aware. That is, it may be hypothesized that the rules and strategies that

govern computer programming and artificial languages have become so

deeply ingrained in the knowledge base of CS/CSIS students that the

similarities between programming and writing and between natural and

artificial languages prompt students to draw upon the same cognitive

structures in the use of each, resulting in an unconscious transference of the

general rules and strategies of coding to the practice of writing.

6. Computer programming languages are becoming increasingly similar to

natural language. Specifically, the earliest artificial languages, which closely

approximated mathematical notations (e.g., FORTRAN), have evolved into

much more sophisticated programming languages that bear a greater

resemblance to natural language than they do to the machine language which

gave rise to them. For example, the Java computer programming language

uses delimiters - such as parentheses, semicolons, and quotation marks ~ to

group the source code and delineate the structure of a program in much the

same way that punctuation marks are used to provide structure and guidance

in written texts. Additionally, Java possesses a vocabulary that includes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

78

keywords (i.e., reserved words that indicate the operation the computer is to

perform) and identifiers (i.e., names created by programmers to designate the

classes, fields, and methods they create) that are much more similar to natural

language than they are to the binary numbers of the earliest machine language,

which bore no resemblance to the written word. As the disparity between

computer programming languages and natural language diminishes, writing in

natural language and in artificial languages may increasingly invoke the use of

the same cognitive stmctures. In consequence, student proficiency in

computer programming may facilitate an ability to learn college-level writing

skills. That is, CS/CSIS students’ understanding of higher-level programming

languages that closely approximate natural language may provide cognitive

structures upon which students can draw to facilitate their mastery of writing

and upon which instructors teaching writing to CS/CSIS majors can draw for

analogies to relate writing to computer programming. Conversely, a strong

understanding of natural language and how to use it correctly and efficiently

in the writing process may become increasingly useful to CS/CSIS majors in

their understanding and mastery of computer programming languages.

Kev Recommendations

1. Writing instructors should not assume CS/CSIS students can recognize and

apply the similarities, analogies, and cognitive structures that exist between

writing and computer programming. Rather, instructors must explicitly

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

79

identify analogies between the writing process and the software development

process and between natural and artificial languages. More importantly, these

instructors must aid students in applying their existing cognitive structures

(i.e., knowledge of artificial languages and programming) to the challenges

they face in the writing classroom. For example, instructors might begin the

semester by providing equivalent verbiage for similar concepts and tasks that

exist between the disciplines of English Composition and Computer Science,

such as writing process/software development, linear model/waterfall phase

model, planning/engineering, and outlining/writing pseudo-code (see

Figure 1: Writing/Programming Analogies). Next, the instructor might

demonstrate that similar processes and elements exist in both disciplines, such

as the need for audience/user analysis, the use of grammars, repeated

iterations, and the like (see the subsection titled “Computer Science Majors in

the Writing Classroom” for a more extensive list of similarities). Finally, the

instructor might develop activities and assignments that encourage students to

recognize similarities between writing and programming. For example,

students might compare a paragraph of text with a subroutine in a computer

program to identify similarities such as punctuation, content, structure,

purpose, and so on. Future research should focus on emerging technologies in

the area of Computer Studies to identify ways in which students’ knowledge

of these technologies can be used by writing instructors to facilitate the ability

of their CS/CSIS students to master writing strategies and techniques.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

80

2. Study participants’ ability to see similarities between natural and artificial

languages in the application of syntax rules demonstrates their ability to attend

to technical details and to comprehend details at a lower-order level of

reasoning. Similarly, their inability to recognize parallels between natural and

artificial languages at broader, conceptual levels suggests an inability to apply

higher-order levels of reasoning in this instance. These results suggest that

CS/CSIS majors have learning styles and abilities that facilitate their ability to

recognize technical similarities and parallels at a lower-order level of

reasoning more easily than those at a higher-order level o f reasoning. If this

interpretation is indeed true, it raises the question of whether other learning

style characteristics are shared by many of the CS/CSIS majors. An

understanding of the leaming-style similarities specific to this particular

student population could significantly affect the way in which their instructors

design their courses. In a class in which the majority of the students are in the

same academic discipline and tend to share a similar learning style, courses

could be structured to build upon these students’ leaming-style strengths and

to find ways to overcome their leaming-style weaknesses. For example, given

CS/CSIS majors’ understanding of the overlap in syntax rales between natural

and artificial languages, a writing course designed specifically for these

students might employ analogies that draw upon students’ understanding of

the syntax of computer languages to explain the syntax of natural language.

Moreover, CS/CSIS majors’ understanding and use of flowcharts and their

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

81

familiarity with the concept of parsing as it relates to computer programming

languages suggest that sentence diagramming may be an effective learning

device. Such an analytic approach to language may best aid these students in

understanding writing strategies since they have honed their analytic skills in

their major area of study. Notably, these concepts have greater applicability

than just for CS/CSIS majors in the writing classroom. Anytime a body of

students share a particular learning style and/or way of knowing, instructors of

any subject would be well advised to discern what those learning styles are

and how to take advantage of the strengths and compensate for the

weaknesses inherent in that particular style of learning.

3. Students’ ability to recognize grammatical similarities between natural and

artificial languages but their inability to identify similarities in the processes

these different types of languages use suggests that CS/CSIS students are

skilled in attending to lower-order-level-of-reasoning similarities between

natural and artificial languages but less adept at recognizing overlaps at

higher-order levels of reasoning. Specifically, they do not recognize the

conceptual, abstract commonalities between the processes of coding and

writing, which suggests that CS/CSIS majors may have learning styles and

skills that facilitate some abilities and skills over others. Such findings

indicate that an instructor’s understanding of his or her students’ learning

styles could significantly affect course design - in a CS/CSIS writing class or

any class in which students share a particular learning style.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

§2

4. Students’ inability to recognize the commonalities between natural language

and computer programming languages and between the writing process and

the software development process, which have been identified by researchers,

demonstrates that such similarities are not readily and obviously apparent to

students. Furthermore, without explicit mention of these similarities,

simultaneous involvement in programming assignments and writing projects

does not enhance students’ skill in recognizing the commonalities that exist.

Consequently, writing instructors who are aware of such commonalities and

hope to use them to foster students’ writing success must explicitly identify

such similarities, demonstrate how the similarities indicate the use of

overlapping cognitive structures, and guide students in utilizing these

similarities and cognitive structures in ways that foster good writing. For

example, instructors might draw specific analogies between writing and

coding (e.g., use of syntax, formatting, etc.), then demonstrate how the two

processes can be analogized by examining and drawing parallels between the

various steps in each process (e.g., prewriting/engineering, drafting/writing

pseudo-code, etc.). While the findings and recommendations o f this study are

specific to CS/CSIS majors in the writing classroom, the general principle has

transferability to practically any discipline that can identify within itself

analogies to another field. Of course, practical applicability demands a fairly

standard knowledge base among the group of students being taught - which

is, admittedly, often not the norm, especially in general education courses.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

83

5. CS/CSIS students’ ability to recognize analogies between natural and artificial

languages and between writing and computer programming (although they

profess not to see the value of these) and researchers ’/instructors ’ successful

use of these analogies to teach writing skills and strategies to CS/CSIS

students suggest that analogies may be powerful tools in facilitating CS/CSIS

students’ mastery of writing. If indeed both writing and computer

programming draw upon the same cognitive structures, explicit analogies may

not only aid students in making connections between two disciplines and

better understanding a new academic challenge, they could also potentially

reinforce the common cognitive structures, resulting in improved performance

in both disciplines. This use of interdisciplinary analogies is applicable

beyond the areas of CS/CSIS and English; in fact, such analogies could be

implemented in any discipline that is able to identify commonalities between

itself and other disciplines common to its students. Of course, the value of

analogies is maximized when the majority of the students share a common

knowledge base, one often developed in the pursuit of a shared field of study.

Consequently, future research should explore (1) similarities between

disciplines that could be the foundation for analogies, (2) the use of learning

communities (i.e., assigning a specific group of students to common sections

of particular courses) to facilitate the use of analogies in the learning process,

and (3) the effect the use of interdisciplinary analogies has on student

learning.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

84

6. The increasing similarities between computer programming languages and

natural language add fuel to the argument that programming and writing rely

on the same cognitive structures. While the current study has focused on the

contribution an understanding of computer programming languages can make

to the mastery of written English, the diminishing disparity between

programming languages and natural language suggests that an important

reciprocity may exist. That is, while knowledge of programming may

facilitate the ability to write well, perhaps writing well also facilitates

students’ programming skills. Future research should explore the potential

reciprocity between these two disciplines and identify a means o f exploiting

this reciprocity to enhance student learning. Finally, broadening the scope of

future studies to explore reciprocal leaming in other seemingly disparate

disciplines that perhaps share cognitive structures could lead to improved

course design, more effective teaching, and enhanced student leaming.

While this study has focused primarily on the overlapping cognitive stmctures

between computer programming and writing, the findings have implications beyond the

areas of Computer Science, Computer Science Information Systems, and English

Composition. Research on overlapping interdisciplinary cognitive structures for any

given subset (i.e., major) of the student population at the university level may lead to a

greater understanding of how instructors might more effectively teach specific segments

of university students in courses that lie both within and outside of their major area of

study.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

85

Bibliography

Baumann, James F., and Ann M. Duffy-Hester. “Making Sense of Classroom Worlds:

Methodology in Teacher Research.” Methods o f Literacy Research: The

Methodology Chapters from the Handbook o f Reading Research, Vol. III. Ed.

Kamil, Michael L. Mahwah, NJ: Lawrence Erlbaum Associates, Inc., 2002. 1-22.

18 Dec. 2003 <http://emedia.netlibrary.com/reader/ebook_info.asp7cu_id~

63465>.

Bell-Gredler, Margaret. Learning and Instruction: Theory into Practice. NY: Collier

Macmillan, 1986.

Ben-Ajri, Mordecahi. “Constructivism in Computer Science Education.” SIGCSE

Bulletin 30.2 (1998): 257-261.

Bickerstaff, Douglas D., and Judith D. KaulBman. Improving Student Writing Skills:

Inter-Departmental Collaborations. Proc. of the Twenty-Third ACM Special

Interest Group on Computer Science Education (SIGCSE) Technical Symposium

on Computer Science, 1992, Kansas City, Missouri. NY: ACM Press, 1992. 42-

45. <http://portal.acm.org>.

Biggs, John B. “Introduction and Overview.” Teaching for Leaming: The View from

Cognitive Psychology. Ed. John B. Biggs. Australia: Acer, 1991. 1-6.

Biggs, John B., and Phillip J. Moore. The Process o f Learning, 3”̂ edition. New York:

Prentice Hall, 1993.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://emedia.netlibrary.com/reader/ebook_info.asp7cu_id~%e2%80%a863465
http://emedia.netlibrary.com/reader/ebook_info.asp7cu_id~%e2%80%a863465
http://portal.acm.org

www.manaraa.com

86

Bimbaum, June Cannell. “Reflective Thought: The Connection between Reading and

Writing.” Convergences: Transactions in Reading and Writing. Ed. Bruce T.

Petersen. Urbana, IL: NCTE, 1986. 30-45.

Bissex, Glenda L., and Richard H. Bullock, eds. Seeing for Ourselves: Case-Study

Research by Teachers o f Writing. Portsmouth, NH: Heinemann, 1987.

Bresko, Laura L. “The Need for Technical Communicators on the Software

Development Team.” Technical Communications (1991): 214-220.

Chandler, Kelly. “Working in Her Own Context: A Case Study of One Teacher

Researcher.” Language Arts 11. \ (1999): 27-33. ProQuest. GALILEO.

Kennesaw State University, Kennesaw, GA. 29 Dec. 2003.

“Computer Programming.” AccessScience (2002). McGraw-Hill. GALILEO.

Kennesaw State University, Kennesaw, GA. 02 Jul. 2003.

Collins, Allan M., and M. Ross Quillian. “Experiments on Semantic Memory and

Language Comprehension.” Cognition in Leaming and Memory. Ed. Lee W.

Gregg. NY: John Wiley & Sons, Inc., 1990. 117-137.

Cook, Vivian. “Knowledge of Writing.” International Review o f Applied Linguistics in

Language Teaching 39.1 (2001). EBSCOhost. GALILEO. Kennesaw State

University, Kennesaw, GA. 01 Aug. 2003.

Corbin, Michelle, Pat Moell, and Mike Boyd. “Technical Editing as Quality Assurance:

Adding Value to Content.” Technical Communication 49.3 (2002): 286-300.

Donnelly, Colleen Elaine. Linguistics fo r Writers. Albany, NY: State University of

New York Press, 1994.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

87

Dorsel, Thomas N. “Conflicting Goals: A Dilemma for the Teacher-Researcher.”

Teaching o f Psychology 8.1 (1981): 52-53.

Ellis, Donald G. From Language to Communication. Mahwah, NJ: Lawrence Erlbaum

Associates, Inc., 1999.

Erlandson, David A., Edward L. Harris, Barbara L. Skipper, and Steve D. Allen. Doing

Naturalistic Inquiry: A Guide to Methods. Newbury Park, CA: Sage

Publications, 1993.

Fell, Harriet J., Viera K. Proulx, and John Casey. Writing Across the Computer Science

Curriculum. Proc. of the Twenty-Seventh ACM Special Interest Group on

Computer Science Education (SIGCSE) Technical Symposium on Computer

Science Education, 1996, Philadelphia, Pennsylvania. NY: ACM Press, 1996.

204-209. <http://portal.acm.org>.

Flower, Linda, and John R. Hayes. “The Cognition of Discovery: Defining a Rhetorical

Problem.” The Writing Teacher’s Sourcebook. Ed. Gary Tate and Edward P. J.

Corbett. New York: Oxford University Press, 1988. 92-102.

Flower, Linda, and John R. Hayes. “A Cognitive Process Theory of Writing.” College

Composition and Communication 32.4 (1981): 365-387.

Gagne, Robert Mills. “The Acquisition of Knowledge.” Psychological Review 69.4

(1962): 355-365.

Gagne, Robert Mills, and Marcy Perkins-Driscoll. Essentials o f Leaming fo r Instruction.

2" êd. Englewood Cliffs, NJ: Prentice Hall, 1988.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://portal.acm.org

www.manaraa.com

88

Gilbert, Stephen. Sams Teach Yourself Java 2 Online in Web Time. Indianapolis, IN:

Sams Publishing, 1999.

Hammack, Floyd M. “Ethical Issues in Teacher Research.” Teachers College Record 99

(1997): 247-265.

Harley, Trevor A. The Psychology o f Language: From Data to Theory. East Sussex,

UK: Psychology Press Ltd., 1995.

Hartman, Janet. Writing to Learn and Communicate in a Data Structures Course. Proc.

of the Twentieth ACM Special Interest Group on Computer Science Education

(SIGCSE) Technical Symposium on Computer Science Education, 1989,

Louisville, Kentucky. NY: ACM Press, 1989. 32-36. <http://portal.acm.org>.

Hyler, Linda. “Teaching Writing Through Programming.” Computers and Composition:

An International Journal fo r Teachers o f Writing 2.2 (1985): 2-3.

<http://www.hu.mtu.edu/~candc/archives/v2/2_2_2_Hyler.html>.

Kaczmarczyk, Lisa C. A Technical Writing Class for Computer Science Majors:

Measuring Student Perceptions o f Leaming. Proc. of the Thirty-Fourth ACM

Special Interest Group on Computer Science Education (SIGCSE) Technical

Symposium on Computer Science Education, 2003, Reno, Nevada. NY: ACM

Press, 2003. 341-345. <http://portal.acm.org>.

Kay, David G. “Computer Scientists Can Teach Writing: An Upper Division Course for

Computer Science Majors.: SIGCSE Bulletin 30.2 (1998): 117-120.

Keenan, Edward L. “Some Properties of Natural Language Quantifiers: Generalized

Quantifier Theory.” Linguistics and Philosophy 25 (2002): 627-654.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://portal.acm.org
http://www.hu.mtu.edu/~candc/archives/v2/2_2_2_Hyler.html
http://portal.acm.org

www.manaraa.com

89

Kennesaw State University (KSU). Computer Science and Information Systems (CSIS)

Department. Computer Science & Information Systems. 2003. 19 Dec. 2003.

<http;// science.kennesaw. edu/csis/>.

Kennesaw State University (KSU). Fact Book. 2004. 25 May 2004. <http://ir.kennesaw.

edu/fb>.

Knoblauch, C. H. “The Teaching and Practice of ‘Professional Writing.’” Writing in the

Business Professions. Ed. Myra Krogen. Urbana, IL: NCTE, 1989. 246-264.

Kreymer, Oleg. “An Evaluation of Help Mechanisms in Natural Language Information

Retrieval Systems.” Online Information Review 26.1 (2002). ProQuest.

GALILEO. Kennesaw State University, Kennesaw, GA. 23 Jul. 2003.

Levine, Howard, and Howard Rheingold. The Cognitive Connection: Thought and

Language in Man and Machine. New York: Prentice Hall, 1987.

Levine, Linda, Linda H. Pesante, and Susan B. Dunkle. “Implementing the Writing Plan:

Heuristics from Software Development.” The Technical Writing Teacher 18.2

(1991): 116-126.

Lincoln, Yvonna S., and Egon G. Guba. Naturalistic Inquiry. Beverly Hills, CA: Sage

Publications, 1985.

Lycan, William G. Logical Form in Natural Language. Cambridge, MA: MIT Press,

1986.

Mann, Nancy. “Point Counterpoint: Teaching Punctuation as Information

Management.” College Composition and Communication 54.3 (2003): 359-393.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://ir.kennesaw

www.manaraa.com

90

McClendon, Ronald C. “Construct Validity of the MSLQ and Cognition as Related to

Motivation and Leaming Strategy Use of Preservice Teachers.” Diss. U. of

Akron, 1993.

Miles, Matthew B., and A. M. Huberman. Qualitative Data Analysis: An Expanded

Sourcebook. 2"*̂ ed. Thousand Oaks, CA: Sage Publications, Inc., 1994.

Pesante, Linda H. Integrating Writing into Computer Science Courses. Proc. of the

Twenty-Second ACM special Interest Group on Computer Science Education

(SIGCSE) Technical Symposium on Computer Science Education, 1991 San

Antonio, Texas. NY: ACM Press, 1991. 205-209. <http://portal.acm.org>.

Pfeiffer, Phil. “What Employers Want from Students: A Report from OOPSLA.”

SIGCSE Bulletin 31.2 (1999): 69-70.

Phillips, D. C., and Jonas F. Soltis. Perspectives on Learning. NY: Teachers College

Press, 1985.

“Programming Languages.” AccessScience (2002). McGraw-Hill. GALILEO.

Kennesaw State University, Kennesaw, GA. 01 Aug. 2003.

Reagan, Sally Barr. “Teaching Reading in the Writing Classroom.” Journal o f Teaching

Writing 5 (1986): 177-185.

Rubin, Herbert J., and Irene S. Rubin. Qualitative Interviewing: The Art o f Hearing

Data. Thousand Oaks, CA: Sage Publications, 1995.

Scacchi, Walt. Models of Software Evolution: Life Cycle and Process. Pittsburgh, PA:

Software Engineering Institute, Carnegie Mellon University, 1987.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://portal.acm.org

www.manaraa.com

91

Smith, Frank. Understanding Reading: A Psycholinguistic Analysis o f Reading and

Learning to Read. 5* ed. Hillsdale, NJ; Lawrence Erlbaum Associates,

Publishers, 1994.

Stake, Robert E. The Art o f Case Study Research. Thousand Oaks, CA: Sage

Publications, Inc., 1995.

Stemglass, Marilyn S. “Integrating Instruction in Reading, Writing+, and Reasoning.”

The Writer’s Mind. Ed. Janice N. Hays et al. Urbana, IL; NCTE, 1983. 153-158.

Stemglass, Marilyn S. “Writing Based on Reading.” Convergences: Transactions in

Reading and Writing. Ed. Brace T. Petersen. Urbana, IL: NCTE, 1986. 151-152.

Taylor, Harriet, and Katherine M. Paine. An Inter-Disciplinary Approach to the

Development o f Writing Skills in Computer Science Students. Proc. o f the

Twenty-Fourth ACM Special Interest Group on Computer Science Education

(SIGCSE) Technical Symposium on Computer Science Education, 1993,

Indianapolis, Indiana. NY: ACM Press, 1993. 274-278. <http://portal.acm.org>.

Tiemey, Robert J., and Margie Leys. “What is the Value of Connecting Reading and

Writing?” Convergences: Transactions in Reading and Writing. Ed. Brace T.

Petersen. Urbana, IL: NCTE, 1986. 15-29.

Travers, Robert M. W. Essentials o f Learning: An Overview fo r Students o f Education,

2"** ed. NY: The Macmillan Company, 1967.

Walker, Henry M. “Writing Within the Computer Science Curriculum.” SIGCSE

Bulletin 30.2 (1998): 24-25.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://portal.acm.org

www.manaraa.com

92

Wittrock, M. C. “The Generative Process of Memory.” The Human Brain. Ed. M. C.

Wittrock. Englewood Cliffs, NJ: Prentice-Hall, Inc, 1977. 153-184.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX A

Computer Science Undergraduate M ajor Degree Requirements

__________________ Degree Requirements 2003-2004__________________

93

Course Description Hours Course
ANTH2105 or Anthropology , 2 ART 1107 or
GEOG2105 o, Geography 1 2 MUSI 1107 or
PSYC 2105 or
SOCI2105

Psychology (
Sociology J

2 2 THTR 1107

ECON 1100 or
COM 1109 or Communication 3 ECON 2100
FL 1002 or Foreign Language " 3 3
PHIL 2200 Ways of Knowing 3 ENGL 1101

ENGL 1102
PHYS 1111

&
PHYS 1112

O

Intro. Physics I 4 ENGL 2110

Intro Physics II 4

 ̂ 8 3

MATH 1113
MATH 1190

PHYS 2211 Princ. Physics I
PHYS 221IL Lab 1 HIST 1110
PHYS 2221 Princ. Physics II 3 HIST 2112
PHYS 2212L LAB J 1 POLS 1101
(PHYS 2211/2212 recommended) HPS 1000

Visual Arts
Music
Theater }
Global Econ 3
Microeconomics 3 J

Composition 1 3
Composition II 3 t
World Literature 3 -J

Precalculus
Calculus I

World Civilization 3
America 1890 3
Am. Government 3
Fitness for Living 3

9

3

Lower Division Major Requirements
MATH 2202 Calculus II 4
CSIS 2300 Principles of Computing 3
CSIS 2301 Programming Principles I 3
CSIS 2302 Programming Principles II 3
CSIS 2520 Introduction to Data Communications 3

PREREQUISITES
MATH 1190
NONE
CSIS 2300 & any credit-lvl MATH
CSIS 2301
CSIS 2301

Upper Division
CSIS 3150
CSIS 3310
CSIS 3401
CSIS 3402
CSIS 3510
CSIS 3530
CSIS 3600
CSIS 4500
MATH 3322
MATH 3332
MATH 4322
or
MATH 3260
COM 3385
or
ENGL 3140
PHYS 3340

Major Requirements
Programming Languages 3
Database Design and Management 3
Introduction to Data Structures 3
Advanced Data Structures & Algorithms 3
Organization and Architecture 3
Operating Systems 3
Systems Analysis and Design 3
Data Communications Protocols 3
Discrete Modeling I 3
Probability and Statistics 3
Discrete Modeling II 3

Linear Algebra 3
Organizational Presentation 3

Professional Writing in the Disciplines 3
Digital and Analog Electronics 4

PREREQUISITES
CSIS 2302
CSIS 2301
CSIS 2302
CSIS 3401
CSIS 2302
CSIS 2520 & CSIS 3510
CSIS 3310
CSIS 2520 & CSIS 3510
MATH 1113 or MATH 2590
MATH 1190
MATH 3322 & CSIS 2301

MATH 1190
COM 1109 or COM 1129

ENGL 2110
PHYS 1112 or PHYS 2212

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

94

Major Electives - Degree Program Tracks (Choice of one track)
Systems Track (12 hours! PREREQUISITES
CSIS 4130 Parallel and Distributed Architecture and Algorithms
CSIS 4560 Distributed Object Technology
CSIS 4730 Real-Time Systems and Simulation
CSIS 4850 Senior Project

Object-Oriented Software Developmeiit Track (12 hours) ______

CSIS 3650 Object-Oriented Software Development
CSIS 4620 Object-Oriented Methods
CSIS 4650 Advanced Object-Oriented Software Development
CSIS 4850 Senior Project

Free Electives (Any courses in KSU curriculum totaling 8 hours)

Hours Required for Graduation_______________________________

CSIS 3510 & CSIS 3150
CSIS 4500
CSIS 3530
CSIS 3600

PREREQUISITES

CSIS 3600
CSIS 3650
CSIS 3650
CSIS 3600

General Education 47
Lower Division Maj or Requirements 16
Upper Division Major Requirements 40
Major Electives 12
Free Electives________________________+ 8
TOTAL HOURS 123

This form should only be used as a condensed summary. Please refer to the 2003-2004 KSU
undergraduate catalog for complete details and official graduation requirements
CS majors should enroll in major requirements as soon as possible. Do not complete your general
education requirements before starting your CSIS coursework!
Students wishing to graduate under this catalog must earn a grade of C or better in all major
requirements (both upper and lower-division) and major electives
Co-operative Education (CSIS 3396) and Internship (CSIS 3398) can only be used to fulfill free
elective requirements

03-04 CS REQ. Last modified July 7, 2003.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX B

95

Computer Science Undergraduate Major Sample Program of Study

_______ 2003-2004 Computer Science Sample Program of Study ______ _______
Four-Year Program of Study for Full-Time Student

Status 1®* Semester Program 2"^ Semester Program

Freshman
(up to 30 hrs)

ENGL 1101 (3)
MATH 1113 (3)
CSIS 2300 (3)
HPS 1000 (3)
ECON 1100 or ECON 2100 (3)
TOTAL HOURS: IS

ENGL 1102 (3)
MATH 1190 (4)
POLS 1101 (3)
COM 1109 or FL 1002

or PHIL 2200 (3)
CSIS 2301 (3)
TOTAL HOURS: 16

Sophomore
(30 - 60 hrs)

ENGL 2110 (3)
CSIS 2520 (3)
PHYS n i l or PHYS 2211 (4)
MATH 2202 (4)
TOTAL HOURS: 17

HIST 1110 (3)
MATH 3322 (3)
CSIS 3310 (3)
CSIS 3401 (3)
PHYS 1112or PHYS 2212 (4)
TOTAL HOURS: 16

Junior
(60 - 90 hrs)

CSIS 3402 (3)
CSIS 3510 (3)
ART 1107 or MUSI 1107

or THTR 1107 (3)
HIST 2112 (3)
ANTH 2105 or GEOG 2105 or
PSYC 2105 or SOCI 2105 (2)
TOTAL HOURS: 14

MATH 3332 (3)
MATH 4322 or 3260 (3)
CSIS 3530 (3)
CSIS 3150 (3)
Free Elective* (2)

TOTAL HOURS: 14

Senior
(over 90 hrs)

CSIS 3600 (3)
CSIS 4500 (3)
PHYS 3340 (4)
Track Elective** (3)
Track Elective** (3)
TOTAL HOURS: 16

CSIS 4850** (3)
COM 3385 or ENGL 3140 (3)
Free Elective* (3)
Free Elective* (3)
Track Elective** (3)
TOTAL HOURS: 15

* Prerequisites for electives vary by class. Check KSU catalog for current prerequisite requirements.
** Systems Track: CSIS 4130, CSIS 4560, CSIS 4730
** 0 -0 Software Development Track: CSIS 3650, CSIS 4620, CSIS 4650

This proposed schedule is not intended to reflect the availability of courses, but instead, is intended to
demonstrate the feasibility of completing the B.S. Computer Science by a full-time student in a standard
four-year schedule. Each student should consult "Schedule of Credit Courses" for an accurate listing of
course offerings. Part-time students should consider enrollment in the Summer Semester in order to stay on
schedule for graduation. All students should plan their schedule around the major required courses, and
begin their CSIS coursework as early as possible in their program of study.

Students should note that the CSIS department recommends that they begin taking CSIS coursework as
soon as possible and save their free electives until the end of their program of study.

Students should consult the current KSU Undergraduate Catalog for official degree requirements.

03-04 CS SAMPLE STUDY. Last modified July 11,2003.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

96

APPENDIX C

Computer Science Information Systems Undergraduate Major Degree
Requirements

Information Systems
Degree Requirements 2003-2004

Course
ANTH 2105 or
GEOG 2105 or
PSYC 2105 or
SOCI 2105

COM 1109 or
FL 1002 or
PHIL 2200

Description
Anthropology
Geography
Psychology
Sociology

Communication 3
Foreign Language 3
Ways of Knowing 3

Hours

SCI 1101 & Inter. Science
Basic Princ.

SCI 1102 Inter. Science
Issues in Science

(The following classes may be
substituted for SCI 1101/1102)
CHEM 1111/llllL or
CHEM 1211/121 IE or
PHYS 1111 /llllL or
PHYS 1112/1112L

}

} 7-8
4
4
4
4

Course Description
ART 1107 or Visual Arts
MUSI 1107 or Music
THTR 1107 Theater

Hours
3
3
3
}

ECON 1100 or
ECON 2100

ENGL 1101
ENGL 1102
ENGL 2110

Global Econ
cs 3

Composition I
Composition II
World Literature

MATH 1101 & Math Modeling 3
MATH 1106 Elem App Calc 3

HIST 1110
HIST 2112
POLS 1101

HPS 1000

Lower Division Major Requirements
ACCT 2100 Introduction to Financial Accounting 3
ACCT 2200 Introduction to Managerial Accounting 3
CSIS 2300 Principles of Confuting 3
CSIS 2301 Programming Principles I 3
CSIS 2302 Programming Principles II 3
CSIS 2520 Introduction to Data Communications 3

}
}

9 hrs

World Civilization 3 1
America 1890 3 r g
Am. Government 3 J

Fitness for Living 3 3 hrs

PREREOUISITEfSI
ENGL 1101 & MATH 1101
ACCT 2100 & MATH 1106
NONE
CSIS 2300 & Credit Level Math
CSIS 2301
CSIS 2301

Upper Division Major Requirements
CSIS 3210 Project Management 3
CSIS 3310 Database Design and Management 3
CSIS 3510 Organization and Architecture 3
CSIS 3530 Operating Systems 3
CSIS 3600 Systems Analysis and Design 3
CSIS 4830 IS Integrated Project 3
CSIS 4840 Info Resource Management & Policy 2
CSIS 4841 IT Connections Lecture Series 1
ENGL 3140 Professional Writing in the Disciplines 3
MGT 3100 Management and Behavioral Sciences 3
MATH 3400 Computer Applications in Statistics 3

PREREOUISITEtSl
CSIS 2301
CSIS 2301
CSIS 2302
CSIS 2520 & CSIS 3510
CSIS 3310
CSIS 3600
CSIS 3600; take with CSIS 4841
CSIS 3600; take with CSIS 4840
ENGL 2110
60 credit hours
CSIS 2300

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

97

Major Electives (Choose S ix 3-hour classes)

Business Electives (Choose 1 - 3, no more than 3 from this area)
ACCT 3100 Intermediate Financial Accounting & Auditing

PREREQUISITES
ACCT 2100 & ACCT

2200
ACCT 3300 Accounting Information Systems ACCT 3100
ACCT 4150 Auditing and Assurance ACCT 3300
COM 3385 Organizational Presentation COM 1109 or COM 1129
FIN 3100 Principles ofFinance 60 Credit Hours
MGT 4160 Organizational Behavior MGT 3100
MKGT3100 Principles of Marketing 60 sem hrs of credit

Non-Business Courses (The remaining maior electives are chosen from):
CSIS 3150 Programming Languages CSIS 3100
CSIS 3550 Unix Administration & Security CSIS 2520 & CSIS 3530
CSIS 3401 Introduction to Data Structures CSIS 2302
CSIS 4210 EDP Audit and Control CSIS 3600
CSIS 4300 Web Development CSIS 3600
CSIS 4310 Database Inplementation Applications CSIS 3310
CSIS 4400 Directed Study Approval o f Instr & Chair
CSIS 4420 Local Area Networks CSIS 2520
CSIS 4490 Special Topics in Information Systems Varies by Topic
CSIS 4500 Data Communication Protocols CSIS 2520 and CSIS 3510
CSIS 4510 Computer Law CSIS 3600
CSIS 4515 Computer Ethics CSIS 3310 & ENGL 3140
CSIS 4555 e-Business Systems CSIS 3210
CSIS 4575 Technology Commercialization Any 3000 Ivl Sci & Math
ISA 3100 Introduction to Information Security & Assurance CSIS 2520
ISA 3200 Applications in Information Security & Assurance CSIS 2520
ISA 3300 Policy & Administration Information Security & Assurance CSIS 2520
ISA 3350 Computer Forensics ISA 3100

Free Electives (Any courses in KSU curriculum totaling 12 hours!

Hours Required for Graduation________ _______________ _____

General Education 45
Lower Division Major Requirements 18
Upper Division Major Requirements 30
Major Electives 18
Free Electives________________________ + 12
TOTAL HOURS 123

This form should only be used as a condensed summary. Please refer to the current KSU
undergraduate catalog for complete details and official graduation requirements
IS majors should enroll in major requirements as soon as possible. Do not complete your general
education requirements before starting your CSIS coursework!
Students wishing to graduate under this catalog must earn a grade of C or better in all major
requirements
Co-operative Education (CSIS 3396) and Internship (CSIS 3398) can only be used to fulfill free
elective credit

03-04 IS REQ. Last modified July 7, 2003.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

98

APPENDIX D

Computer Science Information Systems Undergraduate Major Sample Program of
Study

______________ 2003-2004 Information Systems Sample Program of Study_____________________

Status 1“ Semester Program 2“̂ Semester Program

Freshman
(up to 30

hrs)

ENGL 1101 (3)
MATH 1101 (3)
CSIS 2300 (3)
HPS 1000 (3)
ECON 1100 or ECON 2100 (3)
TOTAL HOURS; 15

ENGL 1102 (3)
MATH 1106 (3)
POLS 1101 (3)
COM 1109 o f FL 2001

or PHIL 2200 (3)
CSIS 2301 (3)
TOTAL HOURS: 15

Sophomore
(3 0 -6 0 hrs)

ENGL 2110 (3)
CSIS 2302 (3)
CSIS 2520 (3)
SCI 1101 (4)
ACCT 2100 (3)
TOTAL HOURS: 16

HIST 1110 (3)
ACCT 2200 (3)
CSIS 3210 (3)
CSIS 3310 (3)
SCI 1102 (3)
TOTAL HOURS: 15

Junior
(60 - 90 hrs)

MATH 3400 (3)
CSIS 3510 (3)
ART 1107 or MUSI 1107

or THTR 1107 (3)
ENGL 3140 (3)
HIST 2112 (3)
ANTH 2105 or GEOG 2105 or

PSYC 2105 or SOCI 2105 (2)
TOTAL HOURS: 17

MGT 3100 (3)
CSIS 3530 (3)
CSIS 3600 (3)
Free Elective* (3)
Major Elective** (3)
TOTAL HOURS: 15

Senior
(over 90 hrs)

CSIS 4840*** (2)
CSIS 4841*** (1)
Major Elective** (3)
Major Elective** (3)
Major Elective** (3)
TOTAL HOURS: IS

CSIS 4830 (3)
Free Elective* (3)
Free Elective* (3)
Major Elective** (3)
Major Elective** (3)
TOTAL HOURS: 15

* Prerequisites for electives vary by class. Check KSU catalog for current prerequisite requirements.
** Major electives are listed in the current KSU catalog. IS majors should consult their advisors to

choose appropriate electives.
*** CSIS 4840 and CSIS 4841 must be taken together in the same semester - they are co-requisites.

This proposed schedule is not intended to reflect the availability of courses, but instead, is intended to
demonstrate the feasibility of completing the B.S. in Information Systems by a full-time student in a
standard four-year schedule. Each student should consult "Schedule o f Credit Courses" for an accurate
listing of course offerings. Part-time students should consider enrollment in the Summer Semester in order
to stay on schedule for graduation. All students should plan their schedule around the major required
courses, and begin their CSIS coursework as early as possible in their program of study.

Students should begin taking CSIS coursework as soon as possible and save free electives until the end of
their program. Consult the KSU Undergraduate Catalog for degree requirements.

03-04 IS SAMPLE STUDY. Last Modified July 11, 2003.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

99

APPENDIX E

Sample Syllabus of a Technical Writing Course at Kennesaw State University

TECHNICAL WRITING
Engl 3140-02: MW 8:00 p.m. - 9:15 p.m., HU 134
Engl 3140-03: TTlhOO a.m. -12:15 p.m., HU 235

Instructor: Ms. Ruth A. Goldfine Phone: 770/423-6000 (Office)
Office: HU 107 770/xxx-xxxx (Home)
Office Hours: T 1:00-3:00 p.m., W 3:00-7:00 p.m. Email: rgoldfin@kennesaw.edu

Prerequisite: ENGL 2110

Texts and Materials:
• Writing for the Technical Professions by Kristin R. Woolever (Longman 2002)
• Conqjanion Web Site: Writing for the Technical Professions Online:

http://wps.ablongman.com/long woolever wrtechnrof 2
• Online readings as assigned
• Web CT access (we will use WebCT for the online component of our course)
• Several computer disks (3.5-inch high density disks)

Recommended Materials
• A writing style guide (e.g., Diana Hacker’s A Writer’s Reference)
• A citation/documentation style manual for your discipline

Course D escription

Welcome to Technical Writing! This course is designed to help you develop an effective method of
planning and completing writing tasks so that you can meet professional writing demands. Most if not all
technical professionals write on a daily basis in the workplace. Succeeding in the professional world
requires not only technical knowledge but also effective writing skills; therefore, this course focuses on the
writing skills necessary for advanced academic and professional writing, tailored specifically the technical
fields.

In this course, you will complete several small assignments and lengthy final project. You will be
participating in intensive writing, reading, revising, and/or peer commentary every week. Although the
course will require much time and effort, by the end of the semester you will have produced several
professional samples of your work that you can provide to prospective employers or graduate schools.

Upon successfully completing this course, you will understand how to:
• Analyze a rhetorical situation in order to develop documents that inform/persuade your readers
• Understand the cultural influences in the workplace that affect communication
• Identify and analyze audiences for particular types of writing
• Organize and present arguments effectively
• Examine sources in your field for their relevance and credibOity
• Write effective memos, letters, short reports, and long, formal reports
• Edit your own work and that of your peers for content, organization, style, and mechanics
• Use graphics and page layout to support and enhance your written message and to create

functional yet eye-catching communications
• Present your research findings to your peers

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mailto:rgoldfin@kennesaw.edu
http://wps.ablongman.com/long

www.manaraa.com

100

Course Requirements
• Attendance, participation, and deliverables noted below
• Weekly quizzes on the assigned readings (completed online)
• Deliverables:

(1) A correspondence packet that includes one email message, one memo, and one letter
(2) A 2- to 3-page source critique and annotated bibliography
(3) A 3- to 5-page proposal and audience analysis
(4) A PowerPoint presentation
(5) Peer commentaries for other members of the class
(6) An 8- to 10-page recommendation report on a topic related to your major or a

collaborative website*
(7) A resume and cover letter (optional; maximum of 3 pts extra credit)

• Students on a website production team must submit 2 additional assignments: (1) individual contract
listing the tasks you will complete as part of the team, and (2) confidential evaluation after completion
of the website, documenting how well you met the objectives set out in your individual contract.

Final Project

Content: The major project for this course is your choice of either (1) a 8- to 10-page analytical research
report - not a typical “research paper,” but a professional recommendation or analysis report - or
(2) a website, created in collaboration with a maximum of 4 other classmates.

• Recommendation Report. You will use your research to support a personal position or
recommendation related to your topic and within your field of study. You will select a real
problem or situation to tackle, and your fmal report will be submitted to the appropriate individual
(e.g., your department chair, your supervisor at work, etc.).

• Website. With a team, you will identify a client for whom you can develop a functioning website
that will be implemented upon completion. You will not be paid for your services to the client,
and you will be required to make a formal presentation of the website at the end o f the semester.

Participation

Always come to class prepared, ready to contribute and take an active role in class discussions and
activities. Your participation in peer reviews is especially important, both to you and your fellow students.

Grading

Written assignments will be graded on completeness o f discussion and of assignment criteria, focus,
organization, originality, effective argumentation and support, evidence of careful proofreading, correct
grammar and effective sentence structure, among other criteria. 1 will calculate your final grade as follows:

Correspondence packet 10 %
Source critique and annotated bibliography 15 %
Proposal and audience analysis 15 %
Peer commentaries, participation, and other short assignments 15 %
Oral presentation 10 %
Final report or website with references 35 %

Total 100 %

EXTRA CREDIT: Resume and cover letter 3 pts

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1 0 1

Comse Policies

Attendance
Because this course includes an online component, we will meet in the classroom only once a week; the
second scheduled weekly class meeting will be via the Internet. Consequently, attendance is required on
those days we meet in the classroom. The only exceptions are documented medical excuses, religious
holidays, and family/work “emergencies” (at the instructor’s discretion). You are allowed 3 unexcused
absences. For each subsequent unexcused absence, three points will be deducted from your final grade
(i.e., if you have a total of 5 unexcused absences, 6 points (3 points for each unexcused absence beyond the
3 allowed) will he deducted from your final grade. If you miss a class, you are responsible for obtaining
the information, course changes, and/or materials that were covered or distributed the day o f your
absence.

Assignment Deadlines
You must turn in or have all assignments ready at the start of class on the day they are due. NO late
assignments are accepted (i.e., you will receive a “zero” for the assignment). If you must miss a class on
a day an assignment is due, tum in the assignment to me early, arrange to have a classmate tum in your
work at the beginning of the class period it is due, or email the assignment to me PRIOR TO the scheduled
start time for our class. Do not assiune that I have received your emailed assignment until I have replied to
your email message. It is your responsibility to follow-up with a call to my office or home if you do not
receive a reply from me prior to the start of that day’s class. “The computer ate my file” or “My printer
wouldn’t print my paper” are not legitimate excuses.

Format o f Assignments

All work must be typed or word-processed and printed with a readable printer. I will only accept
assignments via email on a case-by-case basis. You must have prior approval from me before
submitting an assignment by email.

Papers should have one-inch margins on all sides (top, bottom, left, right) and font size must be 10-, 11-, or
12-point type in a professional-looking font style (no Courier or Courier New). All papers must be double-
spaced unless otherwise noted on the assignment. Visual aids (i.e., graphics) do not count toward the page-
length requirement for the assignment.

Keep copies of all work on floppy disks, hard disks, and paper. Do not throw away any o f your retumed
work, especially drafts of the final report with my comments. Staple pages together if an assignment is
more than one page, and include your name and page number on all pages of each assignment.

Class Cancellation
If classes are canceled for any reason, you are responsible for completing the assignments scheduled for
that day and for preparing properly for the next class as outlined in the daily schedule. If there are any
changes to be made to the schedule, I will send an email message to all students.

Plagiarism
When you use the citable work of someone else, document your source. If you use someone else’s words or
ideas without acknowledging the source, or if you attempt to deliberately represent someone else’s ideas
and/or written work as your own, then you have committed plagiarism, a serious breach o f academic and
professional conduct. If you plagiarize, I am bound by university policy to report your actions to a review
board. Penalties range from failure of the individual assignment to failure of the course and, in some cases,
suspension or expulsion from the university. Be sure to use correct documentation format and include a
references page with your papers (we will talk more about documenting sources in this course). If you
have questions or concerns about plagiarism as you complete your assignments, please ask me.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

102

COURSE SCHEDULE
ENGL 3140-03: TECHNICAL WRITING

MonAVed HU 134
Readings &
Projects Due

Aug 18 Course Introduction / Review Syllabus
Choosing a topic for the final project
Review WebCT and conqjaoion website
In-class writing sample sent as email attachment

25 Online: Read Chapter 1 and take the online quiz Ch. 1
at our companion website. Email the results to
me at: rgoldfin@kennesaw.edu

27 Discussion of final project topics Ch. 6; revise &
Discuss writing email messages send sample
Assignment: Final Project
Helpful resources;

http://web.ics.purdue.edu/~blankert/420/corporate/recommendationre
port.html

http://www.io.com/~hcexres/tcml 603/acchtml/recomx2a non.html
http://www.io.com/~hcexres/tcml603/acchtml/recomx4a nomhtml
http://ocean.otr.usm.edu/~wsimkins/recommendation.html
http://www.beresourceful.org/downloads/casestudv semico.pdf
http://www.lhmu.org.au/lhmu/campaigns/smoke free 03/files/Smoki

ng%20m%20Hospitalitv%20RECOMMENDATION%20REPO
RT.pdf

Send me an email identifying your final project topic and
team members (if applicable)

Sep 01 NO CLASSES - LABOR DA Y
03 Discuss organizing for readers Ch. 3

Assignment: Correspondence Packet
08 Online: (1) Complete online quiz for Ch. 3 and email

the results; (2) Read both online articles for Ch. 3 (at
our companion website) and be prepared to discuss
them in class on Tuesday

10 Discuss Ch. 3 online articles Corr. Pk. (Draft)
Discuss and perform peer reviews of correspondence

packets
15 Online: (1) Read Ch. 2 and complete online quiz; email Ch. 2

results; (2) Read the online article “The Quality o f the
Writing Can Never Be Better than the Quality of the
Research” at
www.ravcomm.com/'techwhirl/phpapps/pfv/pfV.php?/techwhir
l/magazine/writing/hindsights qualitvwriting.html

17 Discuss online article for Ch. 2 Corr. Pk. (F)
Researching and critiquing sources Bring journal.
Assignment: Source Critique and Annotated Bibliography from your disc.

22 Online: (1) Submit via WebCT a draft source critique
(1-2 pages) for one of the journals you will use for your
final project; use the “Source Critique Worksheef’ posted
on WebCT to assist you in Writing your critique; (2) Visit
and READ the following websites:
http://www.librarv.comell.edu/okureEresearch/skill28.htm
http://www.crk.umn.edu/librarv/links/annotate.htm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mailto:rgoldfin@kennesaw.edu
http://web.ics.purdue.edu/~blankert/420/corporate/recommendationre
http://www.io.com/~hcexres/tcml
http://www.io.com/~hcexres/tcml603/acchtml/recomx4a
http://ocean.otr.usm.edu/~wsimkins/recommendation.html
http://www.beresourceful.org/downloads/casestudv
http://www.lhmu.org.au/lhmu/campaigns/smoke
http://www.librarv.comell.edu/okureEresearch/skill28.htm
http://www.crk.umn.edu/librarv/links/annotate.htm

www.manaraa.com

103

Sep

Oct

24

29

01

06

08

13

15

Nov

20

22

27
29

03

Discuss topics, articles, and annotated bibliographies
Locate and share online resources for formatting sources
Online: (1) Read Ch. 5 and complete the online quiz; email

results; (2) Read and write a 1-2 sentence summary of the
four online articles for Ch. 5; submit summaries via WebCT

Discuss editing and online articles
Conduct peer reviews of Annotated Bibliographies and

Source Critiques
Online: Read Ch. 14 and the following online articles:

www.ravcomm.com/techwhirl/magazine/wr
iting/inspectiomnethod.html

www.fastcompanv.com/onhne/Q2/meetings.
html

Write a brief one-page reaction, stating which elements you
found useful and would hope to incorporate into your class
and/or professional work. Submit via WebCT
Creativity Day

Ch. 5

Bring 3-5 articles
for your project

Annotated Bib
& Source Crit

Ch. 14

Annotated Bib
& Source Crit

05

Online: (1) Read Ch. 11. (2) Examine the following websites. Ch. 11
Select ONE, and write a one-page critique. Bring
the critique to the next class meeting.
http://fbox.vt.edu/eng/mech/writing/workbooks/proposals.html
httD://writing.colostate.edu/references/documents/proposal/index.cfm
http://www.emorv.edu/EDUCATION/mfp/proposal.html

Last day to withdraw without academic penalty
Review audience analysis (Ch. 1, pp. 13-17)
Discuss proposals / Share website critiques
In-Class Writing: Write a draft audience analysis

and outline proposal
Assignment: Proposal and Audience Analysis
Online: (1) Read Ch. 8. (2) Review the first 3 online

Web Resources for Ch. 8; print information relevant to
your final project (Note: the Jerz links are not functional)

Discuss descriptions and summarizations
Peer review
Online: Take online grammar quiz
Discuss reports and studies
Present proposals to class
Online: (1) Read Ch. 9 and complete the online quiz.

(2) look over the following web sites:
abstracts:

http://owl.english.purdue.edu/handouts/pw/p abstract.html
http://www.io.com/~hcexres/tcml6G3/acchtml/abstrax.html
http://www.rpi.edu/dept/llc/writecenter/web/abstracts.html
http://www.biogeog.ucsb.edu/proiects/ibm/ibm pubs.html

executive summaries:
http://writing.colostate.edu/references/documents/execsum/index.cfm
http://www.hud. govdibrarv/bookshelflS/archivedsum.cfm

In-class work on final projects I Discuss abstracts and
executive summaries

Crit of Website
Aud. Analysis

(Draft)

Ch.

Proposal & Aud.
Analysis (D)

Proposal & Aud.
Analysis (F)

Ch. 9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.ravcomm.com/techwhirl/magazine/wr
http://www.fastcompanv.com/onhne/Q2/meetings
http://fbox.vt.edu/eng/mech/writing/workbooks/proposals.html
http://www.emorv.edu/EDUCATION/mfp/proposal.html
http://owl.english.purdue.edu/handouts/pw/p
http://www.io.com/~hcexres/tcml6G3/acchtml/abstrax.html
http://www.rpi.edu/dept/llc/writecenter/web/abstracts.html
http://www.biogeog.ucsb.edu/proiects/ibm/ibm
http://writing.colostate.edu/references/documents/execsum/index.cfm
http://www.hud

www.manaraa.com

104

Nov 10 Online: Read Ch. 13 and look over the following sites: Ch. 13
http://www.rof.rice.edu/~riceowl/oralpres.html
http://www.ukans.edu/cwis/units/coms2/vpa/vpa.htm
http://www.kumc.edu/SAH/OTEd/iradel/effective.html
http://fbox.vt.edu/eng/mech/writing/workbooks/visuals.html

12 Discuss presentation
Conduct “practice” presentations

17 Online:(l) Read Ch. 7 and the Ch. 7 online article, “Online Ch. 7
Technical Writing: Instructions, at:
http://www.io.com/~hcexres/tcml-6G3/acchtml/instrux.html
(2) Bring short set of written instructions to next class
meeting

19 Critique instructions Final Projects
A demonstration

Assignment: Instructions (a presentation)
24 Online: Read Ch. 17 and submit online quiz Ch. 17

OPTIONAL: Email DRAFT resume and cover letter to
me for review

26 NO CLASS - THANKSGIVING BREAK
Dec 01 Online: Submit confidential evaluation via WebCT

OPTIONAL: Email FINAL revised resume and cover
letter to me for extra credit

03 PowerPoint Presentations Presentations
10 FINAL EXAM - 8:00 p.m. - 10:00 p.m. Presentations

PowerPoint Presentations

Calendar is subject to change.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.rof.rice.edu/~riceowl/oralpres.html
http://www.ukans.edu/cwis/units/coms2/vpa/vpa.htm
http://www.kumc.edu/SAH/OTEd/iradel/effective.html
http://fbox.vt.edu/eng/mech/writing/workbooks/visuals.html
http://www.io.com/~hcexres/tcml-6G3/acchtml/instrux.html

www.manaraa.com

105

APPENDIX F

Demographics Questionnaire

Personal Information

Name or identifying number:
♦Last four digits o f social security number followed by eight-digit birthday; 123401181982

2 .

3.

4.

Sex;

Date:

Ethnicity/Race:

Male Female

African-American

Hispanic or
Latino

Other:

Caucasian

American Indian
or Alaska Native

5.

6 .

Which age category best describes your current age:

18-22 23-28 29-35 36-4546+

Is English your second language? Yes No

If YES, what is your first language (i.e., your native language)?

Educational Information

7.

9.

What is your Major:

Year:

CS

First-Year

CSIS Other

Sophomore Junior

Other Writing Courses Completed at Kennesaw State University:

English 1101 Composition I
English 1102 Composition II
Other

Asian

Native Hawaiian
or other Pacific

Islander

Senior

10.

11.

Other Writing Courses Completed at a university, college, or community college other than
Kennesaw State University: (please list)

How do you rate your own writing ability?

Excellent Good Adequate Fair Poor

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

106

Employment Information

12. Are you currently employed? Yes No

13. If employed, are you employed in your field (e.g., CS, CSIS, etc.) Yes No

14. If employed, are you required to write as part of your job? Yes No

15. Income Level: <$19,000/yr $ 19,000-30,000/yr
$30,001-45,000/yr >$45,G0G/yr

16. For how many years have you been writing as part of your job?

0 - 2 years 3 - 5 years 6 - 1 0 years 10+ years

17. If you are required to write as part of your job, which of the following do you write;

letters proposals reports (final, interim, travel)

emails website text users manuals

memos instructions Other (please list):

18. If you are required to write as part of your job, which of the following do YOU believe you are
able to write well: (circle ALL that apply)

letters proposals reports (final, interim, travel)

emails website text users manuals

memos instructions Other (please list):

19. If you are required to write as part of your job, which of the following items do YOU believe you
write poorly: (circle ALL that apply)

letters proposals reports (final, interim, travel)

emails website text users manuals

memos instructions Other (please list):

Computer/Computer Programming Knowledge

20. In which computer programming languages are you fluent:

Java HTML PROLOG FORTRAN C++ Ada Pascal

LISP Perl ML COBOL ALGOL Visual BASIC

21. With which programming languages are you familiar and/or minimally capable:

Java HTML PROLOG FORTRAN C++ Ada Pascal

LISP Perl ML COBOL ALGOL Visual BASIC

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

107

22. How do you rate your computer programming skills?

Excellent Good Adequate Fair Poor

23. How do you rate your word processing skills?

Excellent Good Adequate Fair Poor

24. Please list the software packages with which you have expertise:

Word Processing:

Spreadsheet:

Database:

Desktop Publishing:

Web Development:

Graphics:

Others:

25. Please list the software packages with which you have basic competence/familiarity:

Word Processing:

Spreadsheet:

Database:

Desktop Publishing:

Web Development:

Graphics:

Others:

26. Would you be willing to participate in a brief interview (10 - 30 minutes) at the end of this
semester regarding this course?

YES NO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

108

APPENDIX G

Pre-Test Self-Reporting Questionnaire
Name/Identifying Number:

Date:

For each statement below, please circle the number that best describes your degree o f agreement or
disagreement with that statement, then write in a response to the directions that follow each statement.

Disagree
Strongly

Don’t
Know

Agree
Strongly

1. M y writing skills m ay im prove during this course.

Please list the specific areas in which you believe
your writing skills may improve:

10

2. M y existing know ledge base m ay contribute to m y
ability to master the writing sk ills and strategies
presented in this course.

Please list the specific knowledge you believe will
assist you, i f any, in mastering the writing skills and
strategies that will be presented in this course:

10

3. M y understanding o f computer languages m ay assist
m e in mastering the strategies o f effective technical
and professional writing.

Please list those computer languages, i f any, that
you believe your understanding o f will assist you in
mastering the writing skills and strategies that will
be presented in this course:

4. I believe m any strategies for writing m ay be sim ilar
to the strategies used to write computer code.

Please list the writing strategies and the coding
strategies that are similar:

10

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

109

5. I believe I might better understand the rules of
grammar and the theories of composition if the
instructor used analogies related to programming
languages to make connections that relate to me.

P lease list any an alog ies you believe w ou ld assist
you in better understanding the rules o f grammar
an d the theories o f composition:

10

6. I believe the rules of grammar may be similar to the
rules that govern computer programming.

Please list the rules o f grammar that you believe
may be similar to the rules that govern computer
programming:

10

7. I believe there is little or no similarity between
computer programming languages and the English
language.

Please list the reasons you agree or disagree with
this statement.

10

The writing process I use to write an essay may
change because of the writing strategies and
theories I will leam in this course.

P lease list the ways, i f any, in which you think your
writing process may change.

8 9 10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1 1 0

APPENDIX H
Post-Test Self-Reporting Questionnaire

Name/Identifying Number:
Date: __________________

PART I: For each statement below, please circle the number that best describes your degree o f
agreement or disagreement with that statement.

Disagree
Strongly

Don’t
Know

Agree
Strongly

1. My writing skills improved during this course.
1 2 3 4 5 6 7 8 9 10

2. My existing knowledge base contributed to my
ability to master the writing skills and strategies
presented in this course.

1 2 3 4 5 6 7 8 9 10

3. My understanding of computer languages assisted
me in mastering the strategies of effective technical
and professional writing.

1 2 3 4 5 6 7 8 9 10

4. I believe many strategies for writing are similar to
the strategies used to write computer code.

1 2 3 4 5 6 7 8 9 10

5. I believe I would better understand the rules of
grammar and the theories o f composition if the
instructor used analogies related to programming
languages to make connections that relate to me.

1 2 3 4 5 6 7 8 9 10

6. I believe the rules of grammar are similar to the
mles that govern computer programming.

1 2 3 4 5 6 7 8 9 10

7. I believe there is little or no similarity between
computer programming languages and the English
language.

1 2 3 4 6 7 9 10

8. The writing process I use to write an essay changed
because of the writing strategies and theories I
learned in this course.

1 2 3 4 7 8 9 10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

I l l

PART II: Please respon d to each question or statement below in the sp a ce p ro v id ed .

1. If knowledge of a specific computer programming language assisted you in mastering the writing skills
and strategies presented in this course, please list those languages.

2. Which specific elements of the computer programming languages listed in item 1 in particular were
useful to you?

3. Having nearly completed this technical writing course, what similarities, if any, do you recognize
between computer programming languages and the English language?

4. Having nearly completed this technical writing course, what similarities, if any, do you recognize
between the rules of grammar and the rules that govern computer programming?

5. Having nearly complete this technical writing course, what similarities, if any, do you recognize
between the strategies used in composition and the strategies used in computer coding?

6. Having nearly completed this technical writing course, how could the instructor have used analogies
relating to computer programming languages and coding to enhance your understanding of the rules of
grammar and theories of composition?

7. How has your approach to composition been affected by your knowledge and understanding of
computer languages and computer programming, if at all?

8. How has your approach to computer programming been affected, if at all, by the writing strategies,
grammatical rules, and composing process presented in this technical writing class?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

